A closed and analytical formula is given for the free Green’s function in a harmonic oscillator basis. It is very useful for solving the Lippman–Schwinger equation for the scattering of two clusters within the resonating group method formula.

1.
J. A.
Wheeler
,
Phys. Rev.
52
,
1083
(
1937
).
2.
B.
Giraud
,
J.
Hocquenghem
, and
A.
Lumbroso
,
Phys. Rev. C
7
,
2274
(
1974
);
T.
Matsuse
,
M.
Kamimura
, and
Y.
Fukushima
,
Prog. Theor. Phys.
53
,
706
(
1975
).
3.
D. L.
Hill
and
J. A.
Wheeler
,
Phys. Rev.
89
,
1102
(
1953
).
4.
M.
Oka
and
K.
Yazaki
, Quarks and Nuclei, edited by W. Weise in
Int. Rev. Nucl. Phys. (World Scientific, Singapore)
1
,
489
(
1984
);
A.
Faessler
,
F.
Fernandez
,
G.
Lübeck
, and
K.
Shimizu
,
Phys. Lett. B
112
,
201
(
1982
).
5.
C. Gignoux and B. Silvestre‐Brac, Int. Rep. ISN 86‐42, Grenoble.
6.
B.
Silvestre‐Brac
,
J. Phys.
46
,
1087
(
1985
).
7.
M.
Moshinsky
,
Nucl. Phys.
13
,
104
(
1959
).
8.
M. Abramowitz and I. Stegun, Handbook of Mathematical Functions (Dover, New York, 1970).
9.
B.
Silvestre‐Brac
,
J.
Carbonell
, and
C.
Gignoux
,
Phys. Lett. B
179
,
9
(
1986
).
10.
S.
Zouzou
,
B.
Silvestre‐Brac
,
C.
Gignoux
, and
J. M.
Richard
,
Z. Phys. C
30
,
457
(
1986
).
11.
B.
Silvestre‐Brac
,
J.
Carbonell
, and
C.
Gignoux
,
Phys. Rev. D
36
,
2083
(
1987
).
This content is only available via PDF.
You do not currently have access to this content.