New kinds of statistical ensemble are defined, representing a mathematical idealization of the notion of ``all physical systems with equal probability.'' Three such ensembles are studied in detail, based mathematically upon the orthogonal, unitary, and symplectic groups. The orthogonal ensemble is relevant in most practical circumstances, the unitary ensemble applies only when time‐reversal invariance is violated, and the symplectic ensemble applies only to odd‐spin systems without rotational symmetry. The probability‐distributions for the energy levels are calculated in the three cases. Repulsion between neighboring levels is strongest in the symplectic ensemble and weakest in the orthogonal ensemble. An exact mathematical correspondence is found between these eigenvalue distributions and the statistical mechanics of a one‐dimensional classical Coulomb gas at three different temperatures. An unproved conjecture is put forward, expressing the thermodynamic variables of the Coulomb gas in closed analytic form as functions of temperature. By means of general group‐theoretical arguments, the conjecture is proved for the three temperatures which are directly relevant to the eigenvalue distribution problem. The electrostatic analog is exploited in order to deduce precise statements concerning the entropy, or degree of irregularity, of the eigenvalue distributions. Comparison of the theory with experimental data will be made in a subsequent paper.

1.
See, for example,
L. S.
Kisslinger
and
R. A.
Sorensen
,
Kgl. Danske Videnskab. Selskab, Mat.‐Fys. Medd.
32
, No.
9
(
1960
);
M.
Baranger
,
Phys. Rev.
120
,
957
(
1960
).
2.
J. L.
Rosen
,
J. S.
Desjardins
,
J.
Rainwater
, and
W. W.
Havens
, Jr.
,
Phys. Rev.
118
,
687
(
1960
);
J. L.
Rosen
,
J. S.
Desjardins
,
J.
Rainwater
, and
W. W.
Havens
, Jr.
,
120
,
2214
(
1960
).,
Phys. Rev.
3.
E. P.
Wigner
,
Ann. Math.
53
,
36
(
1951
);
E. P.
Wigner
,
62
,
548
(
1955
); ,
Ann. Math.
E. P.
Wigner
,
65
,
203
(
1957
); ,
Ann. Math.
E. P.
Wigner
,
67
,
325
(
1958
).,
Ann. Math.
4.
C. E.
Porter
and
N.
Rosenzweig
,
Suomalaisen Tiedeakat. Toimituksia
,
AVI
, No.
44
(
1960
),
and
C. E.
Porter
and
N.
Rosenzweig
,
Phys. Rev.
120
,
1698
(
1960
).
5.
M. L.
Mehta
,
Nuclear Phys.
18
,
395
(
1960
);
M. L.
Mehta
and
M.
Gaudin
,
Nuclear Phys.
18
,
420
(
1960
); ,
Nucl. Phys.
M.
Gaudin
,
Nuclear Phys.
25
,
447
(
1961
).,
Nucl. Phys.
6.
R. G.
Thomas
and
C. E.
Porter
,
Phys. Rev.
104
,
483
(
1956
);
I. I.
Gurevich
and
M. I.
Pevsner
;
Nuclear Phys.
2
,
575
(
1957
).
7.
E. P.
Wigner
,
Ann. Math.
65
,
203
(
1957
).
8.
F.
Coester
,
Phys. Rev.
89
,
619
(
1953
).
9.
E. P. Wigner, Group Theory and its Application to the Quantum Mechanics of Atomic Spectra (English translated edition, Academic Press, Inc., New York, 1959), Chap. 26.
10.
G. C.
Wick
,
A. S.
Wightman
, and
E. P.
Wigner
,
Phys. Rev.
88
,
101
(
1952
).
11.
H. Weyl, The Classical Groups (Princeton University Press, Princeton, New Jersey, 1946), 2nd Ed., Chap. 6.
12.
C. Chevalley, Theory of Lie Groups (Princeton University Press, Princeton, New Jersey, 1946), pp. 18–24.
J.
Dieudonné
,
Ergeb. d. Math.
5
, (
1955
).
13.
This theorem is presumably well known to the experts; but we are unable to find a reference to it in the mathematical literature. A nonrigorous “physicist’s proof” of it is given in Appendix A of this paper.
14.
H. A.
Kramers
,
Proc. Acad. Sci. Amsterdam
33
,
959
(
1930
).
15.
H. Weyl, reference 11, p. 188.
16.
H. Weyl, reference 11, p. 197, Theorem 7.4C.
17.
J. A. Shohat and J. D. Tamarkin, The Problem of Moments (The American Mathematical Society, Providence, Rhode Island, 1943), p. 8.
18.
See E. C. Titchmarsh, Theory of Functions (Oxford University Press, Oxford, England, 1939), 2nd Ed., p. 186.
19.
S. Ramanujan, Collected Papers (Cambridge University Press, Cambridge, England, 1927), p. 26 of the Introductory Notice.
The same equation appears as Eq. (1.1) in G. H. Hardy, Ramanujan (Cambridge University Press, Cambridge, England, 1940), p. 7.
20.
By private communication. See, also,
F.
Morley
,
Proc. London Math. Soc.
34
,
397
(
1902
).
21.
A. C.
Dixon
,
Messenger of Math.
20
,
79
(
1891
).
22.
A. C.
Dixon
,
Proc. London Math. Soc.
35
,
285
(
1903
).
23.
J.
Dougall
,
Proc. Edinburgh Math. Soc.
25
,
114
(
1907
).
24.
C. E.
Shannon
,
Bell System Tech. J.
27
,
379
and
(
1948
).
Reprinted in book from, C. E. Shannon and W. Weaver, The Mathematical theory of communication (University of Illinois, Urbana, Illinois, 1949).
This content is only available via PDF.
You do not currently have access to this content.