The nonrelativistic propagator is derived by formulating the generalized Aharonov–Bohm effect, valid for any gauge group in a general multiply connected manifold, as a gauge artifact in the universal covering space. The loop phase factors and the free homotopy propagators arise naturally. An explicit expression for the propagator when there are two solenoids present is given.

1.
Y.
Aharonov
and
D.
Bohm
,
Phys. Rev.
115
,
485
(
1959
).
2.
T. T.
Wu
and
C. N.
Yang
,
Phys. Rev. D
12
,
3845
(
1975
).
3.
P. A.
Horvathy
,
Phys. Rev. D
33
,
407
(
1986
);
“The Wu‐Yang factor and the non‐Abelian Aharonov‐Bohm experiment,” preprint DIAS‐STP‐86‐04, 1986.
4.
L. S.
Schulman
,
J. Math. Phys.
12
,
304
(
1971
).
5.
J. S.
Dowker
,
J. Phys. A
5
,
936
(
1972
).
6.
S. Kobayashi and K. Nomizu, Foundations of Differential Geometry (Wiley‐Interscience, New York, 1963), Vol. I.
7.
P.
Goddard
and
D.
Olive
,
Rep. Prog. Phys.
41
,
1357
(
1978
).
8.
W. S. Massey, Algebraic Topology: An Introduction (Harcourt, Brace and World, New York, 1967);
M. A. Armstrong, Basic Topology (McGraw‐Hill, New York, 1979).
9.
C. C.
Bernido
and
A.
Inomata
,
J. Math. Phys.
22
,
715
(
1981
).
10.
R.
Sundrum
and
L. J.
Tassie
,
J. Math. Phys.
27
,
1566
(
1986
).
11.
S. K.
Wong
,
Nuovo Cimento
65A
,
689
(
1970
).
12.
L. C. L.
Botelho
and
J. C.
deMello
,
J. Phys. A
18
,
2633
(
1985
).
This content is only available via PDF.
You do not currently have access to this content.