A mechanism (mathematical transformation) is considered by which a (Schwarzschild) black‐hole singularity can be converted into a (Taub–NUT) (Newman–Unti–Tamburino) wire singularity, or equivalently topological modifications can be induced (e.g., transformation of S2×R2 topology into S3×R and conversely). A topological charge—an invariant of the transformation—emerges as a possible candidate for the description of gravitational entropy in the case of source‐free solutions to Einstein’s equation with one Killing vector field. For a Schwarzschild black hole this invariant reduces to the area of the event horizon (or equivalently the Bolt charge) and it reduces to the square of the NUT charge (or equivalently the length of the closed timelike orbits) in the case of a Taub–NUT magnetic monopole. These considerations lead to the proposition that, under extreme conditions, gravitational clumping or entropy increase could be described by a modification in the characteristic classes of the space‐time manifold due to the onset of nontrivial topological features. Further remarks are presented in view of the role of gravitational magnetic monopoles in quantum gravity, and of a possible relation between the notions of gravitational entropy and arrow of time.

1.
J. D. Bekenstein, Ph.D. thesis, Princeton University, 1972;
Phys. Rev. D
7
,
2333
(
1973
).
2.
S. W.
Hawking
,
Phys. Rev. Lett.
26
,
1344
(
1971
).
3.
S. W. Hawking, “Particles creation by black‐holes,” DAMTP preprint, Cambridge University, March 1974;
“Black‐hole explosions?,” DAMTP preprint, Cambridge University, January 1974.
4.
D.
Wilkins
,
Gen. Relativ. Gravit.
11
,
45
(
1979
).
5.
W.
Kundt
,
Nature
259
,
30
(
1976
).
6.
R. Sorkin, “On the entropy of the vacuum outside a horizon,” Tenth International Conference on General Relativity and Gravitation, Padova, July 1983, edited by B. Bertotti, F. de Felice, and A. Pascolini.
7.
C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman, San Francisco, 1970).
8.
R. Penrose, “Singularities and time‐asymmetry,” in General Relativity, an Einstein Centenary Survey, edited by S. W. Hawking, 1979.
9.
M.
Buchdahl
,
Q. J. Math.
5
, (
1954
).
10.
J. Ehlers, in Les Théories Relativistes de la Gravitation (CNRS, Paris, 1959).
11.
B. K.
Harrison
,
J. Math. Phys.
9
,
1744
(
1968
).
12.
R.
Geroch
,
J. Math. Phys.
12
,
6
(
1971
).
13.
A.
Magnon
,
J. Math. Phys.
27
,
1059
(
1985
).
14.
A.
Magnon
,
J. Math. Phys.
27
,
1066
(
1985
).
15.
R. Geroch, Asymptotic Structure of Space‐Time, edited by F. P. Esposito and L. Witten (Plenum, New York, 1977).
16.
Sz. T. Hu, Homotopy Theory (Academic, New York, 1959).
17.
C. J. S.
Clarke
,
Gen. Relativ. Gravit.
2
,
43
(
1971
).
18.
G. W.
Gibbons
and
S. W.
Hawking
,
Phys. Rev. D
15
,
2752
(
1977
);
G. W.
Gibbons
and
S. W.
Hawking
,
Commun. Math. Phys.
66
,
291
(
1979
).
This content is only available via PDF.
You do not currently have access to this content.