The symmetric tensor spherical harmonics (STSH’s) on the N‐sphere (SN), which are defined as the totally symmetric, traceless, and divergence‐free tensor eigenfunctions of the Laplace–Beltrami (LB) operator on SN, are studied. Specifically, their construction is shown recursively starting from the lower‐dimensional ones. The symmetric traceless tensors induced by STSH’s are introduced. These play a crucial role in the recursive construction of STSH’s. The normalization factors for STSH’s are determined by using their transformation properties under SO(N+1). Then the symmetric, traceless, and divergence‐free tensor eigenfunctions of the LB operator in the N‐dimensional de Sitter space‐time which are obtained by the analytic continuation of the STSH’s on SN are studied. Specifically, the allowed eigenvalues of the LB operator under the restriction of unitarity are determined. Our analysis gives a group‐theoretical explanation of the forbidden mass range observed earlier for the spin‐2 field theory in de Sitter space‐time.

1.
See, e.g., S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space‐Time (Cambridge U.P., Cambridge, 1973).
2.
A. H.
Guth
,
Phys. Rev. D
23
,
347
(
1981
).
3.
A. D.
Linde
,
Phys. Lett. B
108
,
389
(
1982
).
4.
A.
Albrecht
and
P. J.
Steinhardt
,
Phys. Rev. Lett.
48
,
1220
(
1982
).
5.
S.
Weinberg
,
Phys. Rev.
133
,
B1318
(
1964
);
S.
Weinberg
,
134
,
B882
(
1964
).,
Phys. Rev.
6.
G.
Grensing
,
J. Phys. A: Gen. Phys.
10
,
1687
(
1977
).
7.
N. D.
Birrell
,
J. Phys. A: Gen. Phys.
12
,
337
(
1979
).
8.
See, e.g., F. Gürsey, in Relativity, Groups and Topology, edited by B. S. DeWitt and C. DeWitt (Gordon and Breach, New York, 1964).
9.
A.
Higuchi
,
Nucl. Phys. B
282
,
397
(
1987
).
10.
H.
Van Dam
and
M.
Veltman
,
Nucl. Phys. B
22
,
397
(
1970
);
H.
Van Dam
and
M.
Veltman
,
Gen. Relativ. Gravit.
3
,
215
(
1972
);
Y.
Iwasaki
,
Phys. Rev. D
2
,
2255
(
1970
);
V. I.
Zakharov
,
JETP Lett.
12
,
312
(
1970
).
11.
M. Veltman, in Methods in Field Theory, Les Houches 1975, edited by R. Balian and J. Zinn‐Justin (North‐Holland, Amsterdam, 1976).
12.
A.
Chodos
and
E.
Myers
,
Ann. Phys. (NY)
156
,
412
(
1984
).
13.
M. A.
Rubin
and
C. R.
Ordóñez
,
J. Math. Phys.
25
,
2888
(
1984
).
14.
B.
Ratra
,
Phys. Rev. D
31
,
1931
(
1985
).
15.
I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Products, corrected and enlarged edition, edited by A. Jeffrey (Academic, New York, 1980).
16.
T.
Regge
and
J.
Wheeler
,
Phys. Rev.
108
,
1063
(
1957
).
17.
U.
Ottoson
,
Commun. Math. Phys.
8
,
228
(
1968
).
18.
M. A.
Neumark
,
Am. Math. Soc. Transl. (2)
6
,
337
(
1957
) (N = 3);
L. H.
Thomas
,
Am. Math.
42
,
113
(
1941
)
J.
Dixmier
,
Bull. Soc. Math. France
89
,
9
(
1961
) (N = 4);
J. G.
Kuriyan
,
N.
Mukunda
, and
E. C. G.
Sudarshan
,
Commun. Math. Phys.
8
,
204
(
1968
) (N = 5).
This content is only available via PDF.
You do not currently have access to this content.