The concept of a Killing–Maxwell system may be defined by the relation Â[μ;v];ρ =(4π/3)ĵgν]. In such a system the one‐form Âμ is interpretable as the four‐potential of an electromagnetic field F̂μv, whose source current ĵ μ is an ordinary Killing vector. Such a system determines a canonically associated duality class of source‐free electromagnetic fields, its own dual being a Killing–Yano tensor, such as was found by Penrose [Ann. N.Y. Acad. Sci. 224, 125 (1973)] (with Floyd) to underlie the generalized angular momentum conservation law in the Kerr black hole metrics, the existence of the Killing–Yano tensor being also a sufficient condition for that of the Killing–Maxwell system. In the Kerr pure vacuum metric and more generally in the Kerr–Newman metrics for which a member of the associated family of source‐free fields is coupled in gravitationally, it is shown that the gauge of the Killing–Maxwell one‐form may be chosen so that it is expressible (in the standard Boyer–Lindquist coordinates) by 1/2 (a2 cos 2 θ−r2)dt+ 1/2 a(r2a2)sin2 θ dφ, the corresponding source current being just (4π/3)(∂/∂t). It is found that this one‐form (like that of the standard four‐potential for the associated source‐free field) satisfies the special requirement for separability of the corresponding coupled charged (scalar or Dirac spinor) wave equations.

1.
W.
Israel
,
Commun. Math. Phys.
8
,
1776
(
1968
).
2.
B. Carter, in Black Holes, Les Houches, 1972, edited by B. V. and C. De Witt (Gordon and Breach, New York, 1973).
3.
D. C.
Robinson
,
Phys. Rev. D
10
,
458
(
1974
).
4.
B. Carter, in General Relativity, edited by S. W. Hawking and W. Israel (Cambridge U.P., Cambridge, 1979).
5.
G. Bunting, Ph.D. thesis, University of New England, Armidale, New South Wales, 1963.
6.
P. O.
Mazur
,
J. Phys. A
15
,
3173
(
1962
).
7.
B.
Carter
,
Commun. Math. Phys.
99
,
563
(
1985
).
8.
B.
Carter
,
Commun. Math. Phys.
10
,
280
(
1968
).
9.
D. N.
Page
,
Phys. Rev. D
14
,
1509
(
1976
).
10.
B.
Carter
,
Phys. Rev.
174
,
1559
(
1968
).
11.
M.
Walker
and
R.
Penrose
,
Commun. Math. Phys.
18
,
265
(
1970
).
12.
L. P.
Hughston
,
R.
Penrose
,
P.
Sommers
, and
M.
Walker
,
Commun. Math. Phys.
27
,
303
(
1972
).
13.
L. P.
Hughston
and
P.
Sommers
,
Commun. Math. Phys.
32
,
147
(
1973
).
14.
L. P.
Hughston
and
P.
Sommers
,
Commun. Math. Phys.
33
,
129
(
1973
).
15.
R. P.
Kerr
,
Phys. Rev. Lett.
11
,
238
(
1963
).
16.
E. T.
Newman
,
E.
Crouch
,
R.
Chinapared
,
A.
Exton
,
A.
Prakash
, and
R.
Torrence
,
J. Math. Phys.
6
,
918
(
1965
).
17.
W.
Unruh
,
Phys. Rev. Lett.
31
,
1265
(
1973
).
18.
S. A.
Teukolsky
,
Astrophys. J.
185
,
283
(
1973
).
19.
S.
Chandrasekhar
,
Proc. R. Soc. London Ser. A
349
,
571
(
1976
).
20.
R.
Guven
,
Phys. Rev. D
22
,
2327
(
1980
).
21.
J.‐A.
Marck
,
Proc. R. Soc. London Ser. A
385
,
431
(
1983
).
22.
R.
Penrose
,
Ann. N.Y. Acad. Sci.
224
,
125
(
1973
).
23.
R.
Debever
,
Bull. Cl. Sci. Acad. Belg.
LXII
,
662
(
1976
).
24.
C. D.
Collinson
,
Int. J. Theor. Phys.
15
,
311
(
1976
).
25.
R.
Cattenacci
and
F.
Salmestraro
,
J. Math. Phys.
19
,
2047
(
1978
).
26.
B.
Carter
and
R. G.
McLenaghan
,
Phys. Rev. D
19
,
1093
(
1979
).
27.
W.
Dietz
and
R.
Rudiger
,
Proc. R. Soc. London Ser. A
375
,
361
(
1981
).
28.
N.
Kamran
and
R. G.
McLenaghan
,
J. Math. Phys.
25
,
1019
(
1984
).
29.
R.
Debever
,
N.
Kamran
, and
R. G.
McLenaghan
,
J. Math. Phys.
25
,
1955
(
1984
).
30.
N.
Kamran
and
R. G.
McLenaghan
,
Bull. Cl. Sci. Acad. Belg.
LXX
,
596
(
1984
).
31.
N.
Kamran
and
J.‐A.
Marck
,
J. Math. Phys.
27
,
1589
(
1986
).
32.
G.
Gibbons
and
S. W.
Hawking
,
Phys. Rev. D
15
,
2738
(
1977
).
33.
B.
Carter
,
J. Math. Phys.
10
,
70
(
1969
).
34.
R. H.
Boyer
and
R. W.
Lindquist
,
J. Math. Phys.
8
,
265
(
1966
).
35.
S. Chandrasekhar, The Mathematical Theory of Black Holes (Clarendon, Oxford, 1983).
36.
W.
Kinnersley
,
J. Math. Phys.
10
,
1195
(
1969
).
37.
R.
Debever
,
Bull. Soc. Math. Belg.
XXIII
,
360
(
1971
).
38.
R. L.
Znajek
,
Mon. Not. R. Astron. Soc.
179
,
457
(
1977
).
39.
B. Carter and R. G. McLenaghan, in Recent Developments in General Relativity, edited by R. Ruffini (North‐Holland, Amsterdam, 1982).
40.
R.
Debever
,
R. G.
McLenaghan
, and
N.
Tarig
,
Gen. Relativ. Gravit.
10
,
853
(
1979
).
41.
B.
Carter
,
Phys. Rev. D
16
,
3414
(
1977
).
This content is only available via PDF.
You do not currently have access to this content.