The canonical Hamiltonian structure of the equations of fluid dynamics obtained in the Boussinesq approximation are considered. New variational formulations of these equations are proposed and it is found that, as in the case of the KdV equation and the equations governing long waves in shallow water, they are degenerate Lagrangian systems. Therefore, in order to cast these equations into canonical form it is again necessary to use Dirac’s theory of constraints. It is found that there are primary and secondary constraints which are second class and it is possible to construct the Hamiltonian in terms of canonical variables. Among the examples of Boussinesq equations that are discussed are the equations of Whitham–Broer–Kaup which Kupershmidt has recently expressed in symmetric form and shown to admit tri‐Hamiltonian structure.

1.
J. C.
Luke
,
J. Fluid Mech.
27
,
395
(
1967
).
2.
V. E.
Zakharov
,
J. Appl. Mech. Tech. Phys. (USSR)
9
,
190
(
1968
).
3.
L. J. F.
Broer
,
Physica (Utrecht)
76
,
364
(
1974
).
4.
J. W.
Miles
,
J. Fluid Mech.
83
,
153
(
1977
).
5.
Y.
Nutku
,
J. Phys. A
16
,
4195
(
1983
).
6.
P. A. M. Dirac, Lectures on Quantum Mechanics, Belfer Graduate School Monograph Series No. 3 (Yeshiva U.P., New York, 1964).
7.
A. Hanson, T. Regge, and C. Teitelboim, Accad. Naz. dei Lincei, Roma, 1976.
8.
Y.
Nutku
,
J. Math. Phys.
25
,
2007
(
1984
).
9.
C. S.
Gardner
,
J. Math. Phys.
12
,
1548
(
1971
).
10.
A. J. Macfarlane, CERN preprint TH 3289, 1982.
11.
M. J.
Bergvelt
and
B. A.
DeKerf
,
Lett. Math. Phys.
10
,
18
(
1985
).
12.
F.
Lund
,
Physica (Utrecht) D
18
,
420
(
1986
).
13.
A.
Lenard
, reported in
P. D.
Lax
,
SIAM Rev.
18
,
351
(
1976
).
14.
P. J.
Olver
,
J. Math. Phys.
18
,
1212
(
1977
).
15.
F.
Magri
,
J. Math. Phys.
19
,
1156
(
1978
).
16.
I. M.
Gel’fand
and
I. Ya.
Dorfman
,
Funk. Anal.
13
,
13
(
1979
).
17.
A. S.
Fokas
and
B.
Fuchssteiner
,
Lett. Nuovo Cimento
28
,
299
(
1980
);
A. S.
Fokas
and
B.
Fuchssteiner
,
Physica (Utrecht) D
4
,
47
(
1981
).
18.
P. J.
Olver
,
J. Math. Phys.
27
,
2495
(
1986
).
19.
G. B.
Whitham
,
Proc. R. Soc. London Ser. A
299
,
6
(
1967
).
20.
L. J. F.
Broer
,
Appl. Sci. Res.
31
,
377
(
1975
).
21.
D. J.
Kaup
,
Prog. Theor. Phys.
54
,
396
(
1975
).
22.
B. A.
Kupershmidt
,
Commun. Math. Phys.
99
,
51
(
1985
).
23.
G. B. Whitham, Linear and Non‐linear Waves (Wiley, New York, 1974).
24.
J. L.
Bona
and
R.
Smith
,
Math. Proc. Cambridge Philos. Soc.
79
,
167
(
1976
).
25.
P. J.
Olver
,
Contemp. Math.
28
,
231
(
1984
).
26.
G. B.
Whitham
,
Proc. R. Soc. London Ser. A
283
,
238
(
1965
).
27.
F. Neyzi, thesis, Bosphorus University, 1984.
28.
Y.
Nutku
,
J. Math. Phys.
26
,
1237
(
1985
).
29.
D. J.
Benney
,
Stud. Appl. Math.
52
,
45
(
1973
).
30.
P. J. Olver, Applications of Lie Groups to Differential Equations (Springer, Berlin, 1986).
31.
Y. Nutku, to be published in J. Math. Phys.
32.
M.
Lakshmanan
and
P.
Kaliappan
,
J. Math. Phys.
24
,
795
(
1983
).
33.
M. J. Ablowitz and H. Segur, “Solitons and the inverse scattering transform” in SIAM Studies in Applied Mathematics (SIAM, Philadelphia, 1981).
This content is only available via PDF.
You do not currently have access to this content.