A mechanism by which space‐time topological modifications could have been controlled, in the early universe or at the Planck length, to enable onset of spinor structure is investigated. This mechanism (based on a reshuffling of topological charges and related modification of characteristic classes) could provide a gravitational analog of the Aharonov–Susskind Gedankenexperiment proposed to detect relative rotation in the universe, spinor behavior, or to keep track of the two homotopy classes of the Lorentz Lie group. The space‐time topology [and in particular the trivial (nontrivial) bundle structure at conformal null infinity] provide a labeling of the asymptotic Lorentz homotopy classes which originates in the first Chern class (enclosed magnetic mass) or in the parametrization of the second homology group, and gives rise to a necessary (and sufficient) condition for the existence of spinor structure. This underlines the intertwined roles of topology and curvature. The mechanism could also be viewed as an ‘‘unwinding’’ of gravitational magnetic monopoles with one asymptotic region into electric mass (black‐hole) solutions with two asymptotic regions. In such situations a discrete PT symmetry could emerge from a continous transformation. Possible implications on the CPT theorem are mentioned.

1.
Ya. B. Zel’dovich and I. D. Novikov, JETP Lett. 1967, 2136;
I. D.
Novikov
,
A. G.
Polnarev
,
A. A.
Starobinsky
, and
Ya. B.
Zel’dovich
,
Astron. Astrophys.
80
,
104
(
1979
);
Ya. B. Zel’dovich and I. D. Novikov, Structure and Evolution of the Universe (U. Chicago P., Chicago, 1983), revised edition.
2.
M.
Suveges
,
Acta Phys. Hung.
20
,
273
(
1966
).
3.
A. S. Eddington, Space‐Time and Gravitation: An Outline of the Theory of Gravitation (Cambridge U.P., Cambridge, 1959).
4.
R. Penrose, Structure of Space‐Time, Battelle Rencontres 1967 (Benjamin, New York, 1968).
5.
R. Penrose, “Null hypersurface initial data for classical fields of arbitrary spin and for General Relativity,” in report ARL 63‐56 USAF, 1963.
6.
R.
Geroch
,
J. Math. Phys.
9
,
1739
(
1968
).
7.
R.
Geroch
,
J. Math. Phys.
11
,
343
(
1970
).
8.
Y.
Aharonov
and
L.
Susskind
,
Phys. Rev.
158
,
1237
(
1967
).
9.
C. T. S.
Clarke
,
Gen. Relativ. Gravit.
2
,
43
(
1971
).
10.
E. P.
Wigner
,
Ann. Math.
40
,
149
(
1939
).
11.
A.
Magnon
,
J. Math. Phys.
27
,
1059
(
1986
).
12.
A. Magnon, “Mass, dual mass and gravitational entropy,” J. Math. Phys., submitted for publication.
13.
A.
Magnon
,
J. Math. Phys.
27
,
1066
(
1986
).
14.
R.
Penrose
,
Proc. R. Soc. London Ser. A
284
,
159
(
1965
).
15.
R.
Geroch
,
J. Math. Phys.
12
,
6
(
1971
).
16.
M.
Buchdahl
,
Quart. J. Math.
5
(
1954
).
17.
J. Ehlers, in “Les Théories relativistes de la gravitation,” CNRS, Paris, 1959.
18.
B. K.
Harrison
,
J. Math. Phys.
9
,
1744
(
1968
).
19.
C. Nash and S. Sen, Topology and Geometry for Physicists (Academic, New York, 1983).
20.
N. Steenrod, The topology of Fiber Bundles (Princeton U.P., Princeton, NJ, 1951).
21.
J. Milnor, “Lectures on characteristic classes,” Princeton University, 1957 (mimeographed notes).
22.
Sz. T. Hu, Homotopy Theory (Academic, New York, 1959).
23.
F. Hirzebuch, Neue Topologische Methoden in der Algebraichschen Geometric (Springer, Berlin, 1956).
24.
R.
Penrose
,
Ann. Phys. (NY)
10
,
171
(
1960
).
25.
L. Z. Fang and H. Sato, “Is the periodicity in the distribution of quasar redshifts an evidence of a multiply connected universe?,” 1985 first award‐winning essay, Gravity Research Foundation, Gloucester, MA 01930.
26.
R. Penrose and W. Rindler, Spinors and Space‐Time (Cambridge U.P., Cambridge, 1984), Vol. 1.
27.
R. Penrose, W. Rindler, Spinors and Space‐Time (Cambridge U.P., Cambridge, 1986), Vol. 2.
This content is only available via PDF.
You do not currently have access to this content.