It is shown that the representation of the E(2)‐like little group for photons can be reduced to the coordinate transformation matrix of the cylindrical group, which describes movement of a point on a cylindrical surface. The cylindrical group is isomorphic to the two‐dimensional Euclidean group. As in the case of E(2), the cylindrical group can be regarded as a contraction of the three‐dimensional rotation group. It is pointed out that the E(2)‐like little group is the Lorentz‐boosted O(3)‐like little group for massive particles in the infinite‐momentum/zero‐mass limit. This limiting process is shown to be identical to that of the contraction of O(3) to the cylindrical group. Gauge transformations for free massless particles can thus be regarded as Lorentz‐boosted rotations.

1.
E.
Inonu
and
E. P.
Wigner
,
Proc. Natl. Acad. Sci. USA
39
,
510
(
1953
);
J. D. Talman, Special Functions, A Group Theoretical Approach Based on Lectures by E. P. Wigner (Benjamin, New York, 1968).
See also R. Gilmore, Lie Groups, Lie Algebras, and Some of Their Applications in Physics (Wiley, New York, 1974).
2.
E. P.
Wigner
,
Ann. Math.
40
,
149
(
1939
);
V.
Bargmann
and
E. P.
Wigner
,
Proc. Natl. Acad. Sci. USA
34
,
211
(
1946
);
E. P.
Wigner
,
Z. Phys.
124
,
665
(
1948
);
A. S. Wightman, in Dispersion Relations and Elementary Particles, edited by C. De Witt and R. Omnes (Hermann, Paris, 1960);
M. Hamermesh, Group Theory (Addison‐Wesley, Reading, MA, 1962);
E. P. Wigner, in Theoretical Physics, edited by A. Salam (IAEA, Vienna, 1962);
A.
Janner
and
T.
Jenssen
,
Physica
53
,
1
(
1971
);
A.
Janner
and
T.
Jenssen
,
60
,
292
(
1972
); ,
Physica (Amsterdam)
J. L.
Richard
,
Nuovo Cimento A
8
,
485
(
1972
);
H. P. W.
Gottlieb
,
Proc. R. Soc. London Ser. A
368
,
429
(
1979
);
H.
van Dam
,
Y. J.
Ng
, and
L. C.
Biedenharn
,
Phys. Lett. B
158
,
227
(
1985
).
For a recent textbook on this subject, see Y. S. Kim and M. E. Noz, Theory and Applications of the Poincaré Group (Reidel, Dordrecht, Holland, 1986).
3.
E. P.
Wigner
,
Rev. Mod. Phys.
29
,
255
(
1957
).
See also
D. W.
Robinson
,
Helv. Phys. Acta
35
,
98
(
1962
);
D.
Korff
,
J. Math. Phys.
5
,
869
(
1964
);
S. Weinberg, in Lectures on Particles and Field Theory, Brandeis 1964, edited by S. Deser and K. W. Ford (Prentice‐Hall, Englewood Cliffs, NJ, 1965) Vol. 2;
S. P.
Misra
and
J.
Maharana
,
Phys. Rev. D
14
,
133
(
1976
);
D.
Han
,
Y. S.
Kim
, and
D.
Son
,
J. Math. Phys.
27
,
2228
(
1986
).
4.
S.
Weinberg
,
Phys. Rev. B
134
,
882
(
1964
);
B
S.
Weinberg
,
135
,
1049
(
1964
); ,
Phys. Rev.
J.
Kuperzstych
,
Nuovo Cimento B
31
,
1
(
1976
);
D.
Han
and
Y. S.
Kim
,
Am. J. Phys.
49
,
348
(
1981
);
J. J.
van der Bij
,
H.
van Dam
, and
Y. J.
Ng
,
Physica A
116
,
307
(
1982
);
D.
Han
,
Y. S.
Kim
, and
D.
Son
,
Phys. Rev. D
31
,
328
(
1985
).
5.
D.
Han
,
Y. S.
Kim
, and
D.
Son
,
Phys. Rev. D
26
,
3717
(
1982
).
For an earlier effort to study the E(2)‐like little group in terms of the cylindrical group, see
L. J.
Boya
and
J. A.
de Azcarraga
,
An. R. Soc. Esp. Fis. Quim. A
63
,
143
(
1967
). We are grateful to Professor Azcarraga for bringing this paper to our attention.
6.
P. A. M.
Dirac
,
Rev. Mod. Phys.
21
,
392
(
1949
);
L. P.
Parker
and
G. M.
Schmieg
,
Am. J. Phys.
38
,
218
,
1298
(
1970
);
Y. S.
Kim
and
M. E.
Noz
,
J. Math. Phys.
22
,
2289
(
1981
).
7.
D.
Han
,
Y. S.
Kim
, and
D.
Son
,
Phys. Lett. B
131
,
327
(
1983
);
D.
Han
,
Y. S.
Kim
,
M. E.
Noz
, and
D.
Son
,
Am. J. Phys.
52
,
1037
(
1984
). These authors studied the correspondence between the contraction of O(3) to E(2) and the Lorentz boost of the Q(3)‐like little group.
This content is only available via PDF.
You do not currently have access to this content.