Perfect Morse functions on the manifold of coherent states are effectively constructed. The case of a compact, connected, simply connected Lie group of symmetry, having the same rank as the stationary group of the manifold of coherent states, such that the manifold of coherent states is a Kählerian C‐space, is considered. It is proved that the set of perfect Morse functions is dense in the set of energy functions for linear Hamiltonians in the elements of the Cartan algebra of the Lie algebra of the representation of the group considered. It is proved that the maximum number of orthogonal vectors on a coherent vector manifold is equal to the Euler–Poincaré characteristic of the manifold.
REFERENCES
1.
V. Guillemin and S. Sternberg, Symplectic Techniques in Physics (Cambridge U.P., London, 1984).
2.
R. Abraham and J. E. Marsden, Foundations of Mechanics (Benjamin, London, 1978), 2nd ed.
3.
B. Konstant, “Quantization and unitary representation,” in Modem Analysis and Applications, Lecture Notes in Mathematics. Vol. 170 (Springer, New York, 1970), p. 87.
4.
J. M. Souriau, Structure des systèmes dynamique (Dunod, Paris, 1970).
5.
6.
M. Morse, The Calculus of Variations in the Large (Am. Math. Soc., Providence, RI, 1934), Vol. XVIII.
7.
8.
9.
10.
11.
S. Berceanu, “Lectures on Morse theory,” Institute of Physics and Nuclear Engineering, preprint FT‐23‐1984, Bucharest, 1984.
12.
“Holomorphic Morse inequalities,” Princeton preprint.
13.
14.
15.
16.
A. M. Perelomov, “Generalized coherent states. General case,” Institute of Theoretical and Experimental Physics preprint ITEP‐144, Moscow, 1983.
17.
18.
19.
20.
21.
R. Bott, “The geometry and representation theory of compact Lie groups,” in Proceedings of the SRL/LMS Research Symposium on Representations of Lie groups, London Mathematics Society, Lecture Notes Series 34 (Cambridge U.P., Cambridge, 1979).
22.
23.
“Quantization theory for homogeneous Kähler manifolds,” IFPR‐T‐038, Parma preprint, 1974.
24.
25.
T. Frankel, “Critical submanifolds of the classical groups and Stiefel manifolds,” in Differential and Combinatorial Topology, A Symposium in Honour of M. Morse, edited by S. S. Cairns (Princeton U.P., Princeton, NJ, 1965).
26.
27.
28.
29.
30.
31.
“Sur la géometrie différentielle des variétes de drapeaux,” Symposia Math. X, 211, Bologna, 1972.
32.
33.
34.
35.
R. Bott, “Morse theory and Yang‐Mills equations,” in Differential Geometrical Methods in Mathematical Physics, Lecture Notes in Mathematics, Vol. 836 (Springer, Berlin, 1980), p. 269.
36.
37.
J. Milnor, Lecture on h‐cobordism Theory (Princeton U.P., Princeton, NJ, 1965).
38.
J. P. Serre, “Répresentations linéires et espaces homogènes kahlréiens des groupes de Lie compacts,” in Sem Bourbaki, annee, 1953/1959, Exp. 100 (Secretariat mathematiques, Paris, 1959), 2nd edition.
39.
40.
41.
G.
D’Ariano
, M.
Rasetti
, and M.
Vadacchino
, J. Phys. A: Math. Gen.
18
, 1295
(1985
).42.
43.
E. P. Wigner, Group Theory and Its Applications to Quantum Mechanics of Atomic Spectra (Academic, London, 1959).
44.
45.
G. Warner, Harmonic Analysis on Semi‐Simple Lie Groups (Springer, Berlin, 1972), Vol. 1.
46.
47.
S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces (Academic, New York, 1978).
48.
49.
50.
51.
52.
V. Guillemin and S. Sternberg, Geometric Asymptotics, Mathematical Surveys, No. 14 (Am. Math. Soc., Providence, RI, 1977).
53.
54.
55.
S. S. Chern, Complex Manifolds (University of Chicago, Chicago, 1956).
56.
57.
58.
59.
J. Leray, Analyse lagrangienne et mecanique quantique: une structure mathematique apparentée aux developement asymptotiques et a l’indice de Maslov, Séminaire du College de France 1976–1977 (R.C.P. 25, I.R.M.A., Strassbourg, France, 1978).
This content is only available via PDF.
© 1987 American Institute of Physics.
1987
American Institute of Physics
You do not currently have access to this content.