Several aspects of the general and constructive spectral theory of quasiperiodic Schrödinger operators in one dimension are discussed. An explicit formula for the absolutely continuous (a.c.) spectral densities that yields an immediate proof of the fact that the Kolmogorov–Arnold–Moser (KAM) spectrum constructed by Dinaburg, Sinai, and Rüssmann [Funkt. Anal. Prilozen. 9, 8 (1975); Ann. Acad. Sci. 357, 90 (1980)] is a subset of the a.c. spectrum is provided. Some quasiperiodicity properties of the Deift–Simon a.c. eigenfunctions are proved, namely, that the normalized phase of such eigenfunctions is a quasiperiodic distribution. In the constructive part the Dinaburg–Sinai–Rüssmann theory is extended to quasiperiodic perturbations of periodic Schrödinger operators using a KAM Hamiltonian formalism based on a new treatment of perturbations of harmonic oscillators. Particular attention is devoted to the dependence upon the eigenvalue parameter and a complete control of KAM objects is achieved using the notion of Whitney smoothness.

1.
B.
Simon
, “
Almost periodic Schrödinger operators: A review
,”
Adv. Appl. Math.
3
,
463
(
1982
).
2.
S. Kotani, “Lyapunov indices determine absolutely continuous spectra of stationary random one‐dimensional Schrödinger operators,” Taniguchi Symp. SA Katata, 1982, p. 225.
3.
P.
Deift
and
B.
Simon
, “
Almost periodic Schrödinger operators, III. The absolutely continuous spectrum in one dimension
,”
Commun. Math. Phys.
90
,
389
(
1983
).
4.
J.
Moser
and
J.
Pöschel
, “
An extension of a result by Dinaburg and Sinai on quasi‐periodic potentials
,”
Comment. Math. Helv.
59
,
39
(
1984
).
5.
Ya. G.
Sinai
, “
Structure of the spectrum of the Schrödinger operator with almost‐periodic potential in the vicinity of its left edge
,”
Funkt. Anal. Prilozen.
19
,
42
(
1985
).
6.
S. Kotani, “One‐dimensional Schrödinger operators and Herglotz functions,” Kyoto University preprint, 1986.
7.
R.
Johnson
and
J.
Moser
, “
The rotation number for almost periodic potentials
,”
Commun. Math. Phys.
84
,
403
(
1982
).
8.
E. I.
Dinaburg
and
Ya. G.
Sinai
, “
On the one dimensional Schrödinger equation with quasi‐periodic potential
,”
Funkt. Anal. Prilozen.
9
,
8
(
1975
).
9.
H.
Rüssmann
, “
On the one‐dimensional Schrödinger equation with a quasi‐periodic potential
,”
Ann. Acad. Sci.
357
,
90
(
1980
).
10.
J.
Avron
and
B.
Simon
, “
Almost periodic Schrödinger operators, II. The density of states
,”
Duke Math. J.
50
,
369
(
1983
).
11.
A. N.
Kolmogorov
, “
On the conservation of conditionally periodic motions under small perturbations of the Hamiltonian
,”
Dokl. Akad. Nauk SSSR
98
,
527
(
1954
).
12.
V.
Arnold
, “
Proof of a theorem by A. N. Kolmogorov on the invariance of quasi‐periodic motions under small perturbation of the Hamiltonian
,”
Russ. Math. Surveys
18
,
9
(
1963
).
13.
J.
Moser
, “
On invariant curves of area‐preserving mappings of an annulus
,”
Nachr. Akad. Wiss. Gottingen Math. Phys. Kl.
II
,
1
(
1962
).
14.
G. Gallavotti, Classical Mechanics and Renormalization Group. In Dynamics Systems, edited by G. Velo and A. S. Wightman (Reidel, Dordrecht, 1985).
15.
G. Gallavotti, “Quasi integrable mechanical systems,” in Critical Phenomena, Random Systems, Gauge Theories, edited by K. Osterwalder and R. Stora (Elsevier, New York, 1986).
16.
H.
Whitney
, “
Analytic extensions of differentiable functions defined in closed sets
,”
Trans. Am. Math. Soc.
36
,
63
(
1934
).
17.
J.
Pöschel
, “
Integrability of Hamiltonian systems on Cantor sets
,”
Commun. Pure Appl. Math.
35
,
220
(
1982
).
18.
L.
Chierchia
and
G.
Gallavotti
, “
Smooth prime integrals for quasi‐integrable Hamiltonian systems
,”
Nuovo Cimento B
67
,
227
(
1982
).
19.
G. Gallavotti, The Elements of Mechanics (Springer, Berlin, 1983).
20.
H. Dym and H. P. McKean, Gaussian Processes, Function Theory and the Inverse Spectral Problem (Academic, New York, 1976).
21.
M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. I: Functional Analysis (Academic, New York, 1972).
22.
E. Coddington and N. Levinson, Theory of Ordinary Differential Equations (McGraw‐Hill, New York, 1955).
23.
A. Fink, “Almost periodic differential equations,” Lecture Notes in Mathematics, Vol. 377 (Springer, Berlin, 1974).
24.
H.
Brezis
and
L.
Nirenberg
, “
Some first‐order nonlinear equations on a torus
,”
Commun. Pure Appl. Math.
30
,
1
(
1977
).
25.
L. Chierchia, “Quasi‐periodic Schrödinger operators in one dimension, absolutely continuous spectra, Bloch waves and integrable Hamiltonian systems,” Ph.D. thesis, New York University, 1986.
26.
W. Magnus and W. Winkler, Hill’s Equation (Wiley‐Interscience, New York, 1966).
27.
H.
Rüssmann
, “
Über die Normalform analytischer Hamiltonscher Differentialgleichungen in der Nahe einer Gleichgewichtslosungen
,”
Math. Ann.
169
,
55
(
1967
).
28.
G.
Gallavotti
, “
A criterion of integrability for perturbed nonresonant harmonic oscillators. ‘Wick ordering’ of the perturbations in classical mechanics and invariance of the frequency spectrum
,”
Commun. Math. Phys.
87
,
365
(
1982
).
29.
J.
Moser
, “
Convergent series expansions for quasi‐periodic motions
,”
Math. Ann.
169
,
136
(
1967
).
30.
J.
Moser
, “
An example of Schrödinger equation with almost periodic potential and nowhere dense spectrum
,”
Comment. Math. Helv.
56
,
198
(
1981
).
This content is only available via PDF.
You do not currently have access to this content.