Long ago, Moyal [Proc. Cambridge Philos. Soc. 45, 99 (1949)] formulated a moment problem in the context of the Wigner–Weyl phase‐space formulation of quantum mechanics. The problem amounts to giving necessary and sufficient conditions for a sequence of numbers to be moments of a Wigner function. In this paper, that problem is solved, and so is a truncated version of it.

1.
J. E.
Moyal
, “
Quantum mechanics as a statistical theory
,”
Proc. Cambridge Philos. Soc.
45
,
99
(
1949
).
2.
F. J.
Narcowich
and
R. F.
O’Connell
, “
Necessary and sufficient conditions for a phase‐space function to be a Wigner distribution
,”
Phys. Rev. A
34
,
1
(
1986
).
3.
F. J. Narcowich, “A quantum mechanical moment problem,” in The Physics of Phase Space, Lecture Notes in Physics, Vol. 278, edited by Y. S. Kim and W. W. Zachary (Springer, Berlin, 1987).
4.
F. J.
Narcowich
, “
A Dyson‐like expansion for solutions to the quantum Liouville equation
,”
J. Math. Phys.
27
,
2502
(
1986
).
5.
A.
Voros
, “
An algebra of pseudodifferential operators and the asymptotics of quantum mechanics
,”
J. Funct. Anal.
29
,
104
(
1978
).
6.
L. Hörmander, The Analysis of Linear Patial Differential Operators III (Springer, Berlin, 1985).
7.
I.
Daubechies
, “
On the distributions corresponding to bounded operators in the Weyl quantization
,”
Commun. Math. Phys.
75
,
229
(
1980
).
8.
M.
Hillary
,
R. F.
O’Connell
,
M. O.
Scully
, and
E. P.
Wigner
, “
Distribution functions in physics: Fundamentals
,”
Phys. Rep.
106
,
121
(
1984
).
9.
F. J. Narcowich, “Distributions of ℏ‐positive type,” preprint.
10.
R. E. Edwards, Functional Analysis (Holt, Rinehart and Winston, New York, 1965).
11.
F. G. Friedlander, Introduction to the Theory of Distributions (Cambridge U.P., Cambridge, 1982).
12.
F. Treves, Topological Vector Spaces, Distributions, and Kernels (Academic, New York, 1967).
13.
A.
Grossmann
,
G.
Loupias
, and
E. M.
Stein
, “
An algebra of pseudodifferential operators and quantum mechanics in phase space
,”
Ann. Inst. Fourier (Grenoble)
18
,
343
(
1968
).
14.
J. R. Ringrose, Compact Non‐Self‐Adjoint Operators (Van Nostrand, Reinhold, London, 1971).
15.
J. C. T.
Pool
, “
Mathematical aspects of the Weyl correspondence
,”
J. Math. Phys.
7
,
66
(
1966
).
16.
E. Nelson, Topics in Dynamics I: Flows (Princeton U.P., Princeton, NJ, 1970).
17.
J. W.
Calkin
, “
Two‐sided ideals and congruences in the ring of bounded operators in Hilbert space
,”
Ann. Math.
42
,
839
(
1941
).
18.
B.
Simon
, “
Distributions and their Hermite expansions
,”
J. Math. Phys.
12
,
140
(
1971
).
19.
J. A. Shohat and J. D. Tamarkin, The Problem of Moments (American Mathematical Society, New York, 1943).
20.
D.
Hilbert
, “
Über die darstellung definiter formen als summen von formenquadraten
,”
Math. Ann.
32
,
342
(
1888
).
21.
A.
Lax
and
P. D.
Lax
, “
On sums of squares
,”
Linear Algebra Appl.
20
,
71
(
1978
).
22.
C. Berg, J. P. R. Christensen, and P. Ressel, Harmonic Analysis on Semigroups (Springer, Berlin, 1985).
23.
E.
Breitenberger
, “
Uncertainty measures and uncertainty relations for angle observables
,”
Found. Phys.
15
,
353
(
1985
).
This content is only available via PDF.
You do not currently have access to this content.