The transformation properties of determined, autonomous systems of second‐order ordinary differential equations, identified as vector fields on the tangent bundle of the space of dependent variables, are derived and studied. The inverse problem of Lagrangian dynamics is studied from this transformation viewpoint as well as the problem of alternative Lagrangians. In particular, regular Lagrangians which are analytic as functions of the first derivatives are considered. Finally, the inverse problem for second‐order systems corresponding to the geodesic flow of a symmetric linear connection is investigated.

1.
M.
Crampin
,
J. Phys. A: Math. Gen.
14
,
2567
(
1981
).
2.
W.
Sarlet
,
J. Phys. A: Math. Gen.
15
,
1503
(
1982
).
3.
M.
Crampin
,
J. Phys. A: Math. Gen.
16
,
3755
(
1983
).
4.
K. Yano and S. Ishihara, Tangent and Cotangent Bundles (Dekker, New York, 1973).
5.
M.
Crampin
and
G.
Thompson
,
Proc. Cambridge Philos. Soc.
98
,
61
(
1985
).
6.
M. Spivak, A Comprehensive Introduction to Differential Geometry (Publish or Perish, Waltham, MA, 1970), Vol. 2.
7.
J. A. Wolf, Spaces of Constant Curvature (McGraw‐Hill, New York, 1967).
8.
W.
Sarlet
,
F. M.
Mahomed
, and
P. G. L.
Leach
,
J. Phys. A: Math. Gen.
20
,
277
(
1987
).
9.
J.
Klein
,
Ann. Inst. Fourier
12
,
1
(
1962
).
10.
C. Godbillon, Geométrie differentielle et méchanique analytique (Herman, Paris, 1969).
11.
M.
Henneaux
and
L. C.
Shepley
,
J. Math. Phys.
23
,
2101
(
1982
).
12.
N. M. J.
Woodhouse
,
Commun. Math. Phys.
44
,
9
(
1975
).
13.
G.
Thompson
,
J. Math. Phys.
27
,
2693
(
1986
).
This content is only available via PDF.
You do not currently have access to this content.