A class of time independent two‐dimensional integrable potentials, all possessing an invariant of the same general form, is constructed. One of these potentials is superintegrable, its invariants realize the symmetry algebra sO(3) for negative energies, e(2) for zero energy, and sO(2,1) for positive energies. A transformation of coupling constants reveals that in parabolic coordinates this potential is the harmonic oscillator acted on by constant forces. This and another potential in the class may be considered as successive extensions of the Kepler potential. The analytic properties of these integrable systems in the complex time plane are also discussed.

1.
M.
Hénon
and
C.
Heiles
,
Astron. J.
69
,
73
(
1964
).
2.
G.
Darboux
,
Arch. Neerl. (ii)
6
,
371
(
1901
).
3.
E. T. Whittaker, Analytical Dynamics of Particles (Cambridge U.P., Cambridge, 1937), 4th ed.;
C. R.
Holt
,
J. Math. Phys.
23
,
1037
(
1982
);
L. S.
Hall
,
Physica D
8
,
90
(
1983
);
A.
Ankiewicz
and
C.
Pask
,
J. Phys. A: Math. Gen.
16
,
4203
(
1983
);
G.
Thompson
,
J. Phys. A: Math. Gen.
17
,
985
(
1984
); ,
J. Phys. A
M.
Wojciechowska
and
S.
Wojciechowski
,
Phys. Lett. A
105
,
11
(
1984
).
4.
J.
Hietarinta
,
Phys. Rep.
147
,
87
(
1987
).
5.
M. A.
Olshanetsky
and
A. M.
Perelomov
,
Invent. Math.
37
,
93
(
1976
);
M.
Adler
,
Commun. Math. Phys.
55
,
195
(
1977
).
6.
B.
Dorizzi
,
B.
Grammaticos
, and
A.
Ramanl
,
J. Math. Phys.
24
,
2282
,
2289
(
1983
).
7.
'Compare Holt in Ref. 3.
8.
T.
Sen
,
Phys. Lett. A
111
,
97
(
1985
).
9.
G.
Thompson
,
J. Math. Phys.
25
,
3474
(
1984
).
10.
P. G. L.
Leach
,
J. Math. Phys.
27
,
153
,
2445
(
1986
).
11.
T.
Sen
,
Phys. Lett. A
122
,
100
(
1987
).
12.
R. S.
Kaushal
,
S. C.
Mishra
, and
K. C.
Tripathy
,
J. Math. Phys.
26
,
420
(
1985
).
13.
This is not the most general case. In particular, there exists the solution A(z) = z(a+m log z),B(z̄) = z̄(b+m log z̄),C(zz̄)—arbitrary, where a, b, m are constants, for which (3.8) is not satisfied. However, this solution leads to a spherically symmetric potential. I consider only the ansatz (3.8) here since this is the only one to have led to a nonspherically symmetric potential. I thank Jacques Perk for suggesting the transformation which converts (3.6) to an autonomous equation and for pointing out the above solution.
14.
J.
Hietarinta
,
Phys. Lett. A
96
,
273
(
1983
).
15.
P.
Winternitz
,
J. A.
Smorodinsky
,
M.
Uhlir
, and
I.
Fris
,
Sov. J. Nucl. Phys.
4
,
444
(
1967
).
16.
E. Stiefel and G. Scheifele, Linear and Regular Celestial Mechanics (Springer, Berlin, 1971).
17.
J.
Hietarinta
,
B.
Grammaticos
,
B.
Dorizzi
, and
A.
Ramani
,
Phys. Rev. Lett.
53
,
1707
(
1984
).
18.
K.
Mariwalla
,
Phys. Rep.
20
,
287
(
1975
).
19.
J.
Hietarinta
,
J. Math. Phys.
25
,
1833
(
1984
).
20.
L.
Cohen
,
J. Math. Phys.
7
,
781
(
1966
).
21.
L. D. Landau and E. M. Lifshitz, Mechanics (Pergamon, New York, 1976), 3rd ed.
22.
M. J.
Ablowitz
,
A.
Ramani
, and
H.
Segur
,
J. Math. Phys.
21
,
715
,
1006
(
1980
).
23.
H.
Yoshida
,
Phys. Lett. A
120
,
388
(
1987
).
24.
G. E.
Prince
and
C. J.
Eliezer
,
J. Phys. A: Math. Gen.
14
,
587
(
1981
).
25.
R. L.
Schafir
,
J. Phys. A: Math. Gen.
14
,
L269
(
1981
);
K. H.
Mariwalla
,
J. Phys. A: Math. Gen.
15
,
L467
(
1982
).
This content is only available via PDF.
You do not currently have access to this content.