In this paper it is shown that the procedure of geometric quantiztion applied to Kähler manifolds gives the following result: the Hilbert space ℋ consists, roughly speaking, of holomorphic functions on the phase space M and to each classical observable f (i.e., a real function on M) is associated an operator f on ℋ as follows: first multiply by f+ 1/4 ℏΔdRfdR being the Laplace–de Rham operator on the Kähler manifold M) and then take the holomorphic part [see G. M. Tuynman, J. Math. Phys. 27, 573 (1987)]. This result is correct on compact Kähler manifolds and correct modulo a boundary term ∫Mdα on noncompact Kähler manifolds. In this way these results can be compared with the quantization procedure of Berezin [Math. USSR Izv. 8, 1109 (1974); 9, 341 (1975); Commun. Math. Phys. 40, 153 (1975)], which is strongly related to quantization by *‐products [e.g., see C. Moreno and P. Ortega‐Navarro; Amn. Inst. H. Poincaré Sec. A: 38, 215 (1983); Lett. Math. Phys. 7, 181 (1983); C. Moreno, Lett. Math. Phys. 11, 361 (1986); 12, 217 (1986)]. It is shown that on irreducible Hermitian spaces [see S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces (Academic, Orlando, FL, 1978] the contravariant symbols (in the sense of Berezin) of the operators f as above are given by the functions f+ 1/4 ℏΔdRf. The difference with the quantization result of Berezin is discussed and a change in the geometric quantization scheme is proposed.

1.
G. M.
Tuynman
, “
Generalized Bergman kernels and geometric quantization
,”
J. Math. Phys.
28
,
593
(
1987
).
2.
D. J. Simms and N. Woodhouse, Lectures on Geometric Quantization (Springer, Berlin, 1977).
3.
B. Kostant, “Quantization and unitary representations” in Lectures in Modem Analysis and Applications III, edited by C. T. Taam, LNM 170 (Springer, Berlin, 1970).
4.
J. Sniatycki, Geometric Quantization and Quantum Mechanics (Springer, Berlin, 1980).
5.
A. Weil, Variétés Kähleriennes (Hermann, Paris, 1958).
6.
F. A.
Berezin
, “
Quantization
,”
Math. USSR Izv.
8
,
1109
(
1974
).
7.
F. A.
Berezin
, “
General concept of quantization
,”
Commun. Math. Phys.
40
,
153
(
1975
).
8.
J.‐M. Souriau, Structures des systèmes dynamiques (Dunod, Paris, 1969).
9.
C.
Duval
,
J.
Elhadad
, and
G. M.
Tuynman
, “
Hyperfine interaction in a classical hydrogen atom and geometric quantization
,”
J. Geom. Phys.
3
,
401
(
1986
).
10.
S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces (Academic, Orlando, FL, 1978).
11.
L. K. Hua, “Harmonic analysis of functions of several complex variables in the classical domains,” Trans. Math. Monogr. 6 (Am. Math. Soc., Providence, RI, 1963).
12.
F. A.
Berezin
, “
Quantization in complex symmetric spaces
,”
Math. USSR Izv.
9
,
341
(
1975
).
13.
R. Abraham and J. E. Marsden, Foundations of Mechanics (Benjamin/Cummings, Reading, MA, 1978), 2nd ed.
14.
V. Guillemin and S. Sternberg, Symplectic Techniques in Physics (Cambridge U.P., Cambridge, 1984).
15.
G. M. Tuynman and W. A. J. J. Wiegerinck, “Central extensions and physics,” preprints of the Mathematisch Instituut, Report 87‐10, Amsterdam, 1987.
16.
C.
Moreno
and
P.
Ortega‐Navarro
, “
Deformations of the algebra of functions on hermitian symmetric spaces resulting from quantization
,”
Ann. Isnt. H. Poincare Sec. A
38
,
215
(
1983
).
17.
C.
Moreno
, “
*‐products on some Kahler manifolds
,”
Lett. Math. Phys.
11
,
361
(
1986
).
18.
C.
Moreno
, “
Invariant star products and representations of compact semisimple Lie groups
,”
Lett. Math. Phys.
12
,
217
(
1986
).
19.
J. Rawnsley and P. Robinson, “Mpc structures and geometric quantization,”University of Warwick, preprint 1984.
20.
C.
Moreno
and
P.
Ortega‐Navarro
*‐products on D1(C),S2 and related spectral analysis
,”
Lett. Math. Phys.
7
,
181
(
1983
).
21.
C. Moreno (private communication).
22.
J.
Rawnsley
and
S.
Sternberg
, “
On representations associated to the minimal nilpotent coadjoint orbit of SL(3,R)
,”
Am. J. Math.
104
,
1153
(
1982
).
This content is only available via PDF.
You do not currently have access to this content.