All weight‐2 zeros of the Wigner 3j coefficients may be obtained from the quadratic Diophantine equation known as Pell’s equation. These zeros may then be classified by the orbits of a discrete, infinite‐order subgroup of the Lorentz group SO(1,1). This is carried out by transforming the ‘‘polynomial part’’ of a weight‐2 3j coefficient to Pellian form and obtaining the fundamental zeros numerically. The relation of this polynomial to a family of binary quadratic forms is also given, together with a discussion of the invariance group.

1.
A. Lindner, Drehimpulse in der Quantenmechanik (Teubner, Stuttgart, 1984).
2.
S.
Brudno
, “
Nontrivial zeros of the Wigner (3j) and Racah (6‐j) coefficients. I. Linear solutions
,”
J. Math. Phys.
26
,
434
(
1985
).
3.
S.
Brudno
and
J. D.
Louck
, “
Nontrivial zeros of the Racah quadnipole invariant
,”
J. Math. Phys.
26
,
1125
(
1985
).
4.
K. S.
Rao
, “
A note on the classification of the zeros of angular momentum coefficients
,”
J. Math. Phys.
26
,
2260
(
1985
).
5.
S.
Brudno
and
J. D.
Louck
, “
Nontrivial zeros of weight 1 3j and 6j coefficients: Relation to Diophantine equations of equal sums of like powers
,”
J. Math. Phys.
26
,
2092
(
1985
).
6.
A.
Lindner
, “
Non‐trivial zeros of the Wigner (3j) and Racah (6j) coefficients
,”
J. Phys. A: Math. Gen.
18
,
3071
(
1985
).
7.
A.
Bremner
, “
On Diophantine equations and nontrivial Racah coefficients
,”
J. Math. Phys.
27
,
1181
(
1986
).
8.
A.
Bremner
and
S.
Brudno
, “
A complete determination of the zeros of weight‐1 6j coefficients
,”
J. Math. Phys.
27
,
2613
(
1986
).
9.
J. J.
Labarthe
, “
Parametrization of the linear zeros of 6j coefficients
,”
J. Math. Phys.
27
,
2964
(
1986
).
10.
K.
Srinivasa Rao
and
V.
Rajeswari
, “
An algorithm to generate the polynomial zeros of degree one of the Racah coefficients
,”
J. Phys. A: Math Gen.
20
,
507
(
1987
).
11.
S.
Brudno
, “
Nontrivial zeros of the Wigner (3j) and Racah (6j) coefficients. II. Some nonlinear solutions
,”
J. Math. Phys.
28
,
124
(
1987
).
12.
W. A.
Beyer
,
J. D.
Louck
, and
P. R.
Stein
, “
Zeros of the Racah coefficients and the Pell equation
,”
Acta Appl. Math.
7
,
257
(
1986
).
13.
L. C. Biedenharn and J. D. Louck, Angular Momentum in Quantum Physics, Vol. 8; The Racah‐Wigner Algebra in Quantum Theory, Vol. 9, Encyclopedia of Mathematics and Its Applications, edited by G. C. Rota (Addison‐Wesley, Reading, MA, 1981).
14.
G.
Racah
, “
Theory of complex spectra. I
,”
Phys. Rev.
61
,
186
(
1942
);
II,
62
,
438
(
1942
); ,
Phys. Rev.
III,
63
,
368
(
1943
); ,
Phys. Rev.
IV,
76
,
1352
(
1949
).,
Phys. Rev.
15.
B. R. Judd, “Topics in atomic theory,” in Topics in Atomic and Nuclear Theory (Caxton, Christchurch, New Zealand, 1970), pp. 1–60.
16.
G.
Vanden Berghe
,
H.
DeMeyer
, and
J.
Van der Jeugt
, “
Tensor operator realizations of E6 and structural zeros of the 6j‐symbol
,”
J. Math. Phys.
25
,
2585
(
1984
).
17.
S. H.
Koozekanani
and
L. C.
Biedenharn
: “
Non‐trivial zeros of the Racah (6‐j) coefficient
,”
Rev. Mex. Fiz.
23
,
327
(
1974
).
18.
M. J. Bowick, “Regge symmetries and null 3‐j and 6‐j symbols,” thesis, University of Canterbury, Christchurch, New Zealand, 1976.
19.
A. de‐Shalit and I. Talmi, Nuclear Shell Theory (Academic, New York, 1963).
20.
J. N.
Ginocchio
, “
A schematic model for monopole and quadrupole pairing in nuclei
,”
Ann. Phys.
126
,
214
(
1980
).
21.
T.
Regge
, “
Symmetry properties of Clebsch‐Gordan coefficients
,”
Nuovo Cimento
10
,
544
(
1958
).
22.
V.
Bargmann
, “
On the representations of the rotation group
,”
Rev. Mod. Phys.
34
,
829
(
1962
).
23.
W. J. LeVeque, Topics in Number Theory (Addison‐Wesley, Reading, MA, 1956), Vol. 1.
24.
B.
Stolt
, “
On the Diophantine equation u2−Dv2 = ±4N⋅I,
,”
Ark. Mat.
2
,
1
(
1951
);
II,
2
,
251
(
1952
); ,
Ark. Mat.
B.
Stolt
,
3
, (
1954
).,
Ark. Mat.
See also
P.
Heichelheim
, “
Some remarks on Stolt’s theorem for Pellian equations
,”
Ark. Mat.
12
,
167
(
1974
).
25.
R. Kortum and G. McNiel, “A table of periodic continued fractions,” Lockheed Missiles and Space Division, 1961, Technical Report AD 640524, Parts I and II (distributed by DTIC, Cameron Station, Alexandria, VA, 22314).
26.
E. Landau, Elementary Number Theory (Chelsea, New York, 1958).
27.
E. D. Dickson, Introduction to the Theory of Numbers (University of Chicago Press, Chicago, 1929).
28.
T. Nagell, Introduction to Number Theory (Wiley, New York, 1951).
This content is only available via PDF.
You do not currently have access to this content.