Using methods analogous to those introduced by Gel’fand etal. [Representations of the rotation and Lorentz Groups and Their Applications (Pergamon, New York, 1963)] for the Lorentz group the matrix elements for the representations of the Lie algebra of the Euclidean group in three dimensions E(3) are explicitly derived. These results are then used to construct invariant equations with respect to this group and to show, in particular, that the nonrelativistic analog to the Dirac equation is not unique.

1.
J.‐M Levy‐Leblond, Galilei Group and Galilean Invariance in Group Theory and its Applications, edited by E. M. Loebl (Academic, New York, 1971), Vol. II;
this review article contains an extensive list of references;
A. S.
Wightman
,
Rev. Mod. Phys.
34
,
845
(
1965
).
2.
J.
Voisin
,
J. Math. Phys.
6
,
1519
(
1965
).
3.
W. I.
Fushchich
and
R. M.
Chemiha
,
J. Phys. A
18
,
3491
(
1985
).
4.
I. M. Gel’fand, R. A. Minlos, and Z. Ya. Shapiro, Representations of the Rotation and Lorentz Groups and Their Applications (Pergamon, New York, 1963).
5.
C.
George
and
M.
Levi‐Nahas
,
J. Math. Phys.
7
,
980
(
1966
).
6.
J.‐M.
Levy‐Leblond
,
Commun. Math. Phys.
6
,
286
(
1967
);
J.‐M.
Levy‐Leblond
,
12
,
64
(
1969
); ,
Commun. Math. Phys.
J.‐M.
Levy‐Leblond
,
J. Math. Phys.
4
,
776
(
1963
).
7.
M.
Humi
,
J. Math. Phys.
10
,
1897
(
1969
).
8.
H. P.
Kunzle
and
C.
Duval
,
Ann. Inst. H. Poincaré
41
,
363
(
1984
);
H. P.
Kunzle
and
J. M.
Nester
,
J. Math. Phys.
25
,
1009
(
1984
).
9.
E.
Majorana
,
Nuovo Cimento
9
,
335
(
1932
).
10.
P.
Furlan
,
V. B.
Petkova
,
G. M.
Sotkov
, and
I. T.
Todorov
,
Rev. Nuovo Cimento
8
,
3
(
1985
);
I. M.
Gel’fand
and
V. A.
Ponomarev
,
Russ. Mat. Surv.
23
,
1
(
1968
);
C.
Rendere
and
D. J.
Griffiths
,
Phy. Rev. D
2
,
317
(
1970
).
11.
G.
Pinski
,
J. Math. Phys.
9
,
1927
(
1968
).
This content is only available via PDF.
You do not currently have access to this content.