Bell’s inequalities are briefly presented in the context of order‐unit spaces and then studied in some detail in the framework of C*‐algebras. The discussion is then specialized to quantum field theory. Maximal Bell correlations β(φ,𝒜(𝒪1), 𝒜(𝒪2)) for two subsystems localized in regions 𝒪1 and 𝒪2 and constituting a system in the state φ are defined, along with the concept of maximal Bell violations. After a study of these ideas in general, properties of these correlations in vacuum states of arbitrary quantum field models are studied. For example, it is shown that in the vacuum state the maximal Bell correlations decay exponentially with the product of the lowest mass and the spacelike separation of 𝒪1 and 𝒪2. This paper is also preparation for the proof in Paper II [S. J. Summers and R. Werner, J. Math. Phys. 28, 2448 (1987)] that Bell’s inequalities are maximally violated in the vacuum state.

1.
J. S.
Bell
, “
On the Einstein‐Podolsky‐Rosen paradox
,”
Physics (NY)
1
,
195
(
1964
).
2.
J. S.
Bell
, “
On the problem of hidden variables in quantum mechanics
,”
Rev. Mod. Phys.
38
,
447
(
1966
).
3.
J. F.
Clauser
and
A.
Shimony
, “
Bell’s theorem: Experimental tests and implications
,”
Rep. Prog. Phys.
41
,
1881
(
1978
).
4.
A. Aspect, “Experimental tests of Bell’s inequalities in atomic physics,” in Atomic Physics 8, edited by I. Lindgren, A. Rosén, and S. Svanberg (Plenum, New York, 1983), p. 103.
5.
A.
Aspect
, “
Experiences basées sur les inégalités de Bell
,”
J. Phys. (Paris) Suppl.
42
,
C2
(
1981
).
6.
R.
Haag
and
D.
Kastler
, “
An algebraic approach to quantum field theory
,”
J. Math. Phys.
5
,
848
(
1964
).
7.
H. Araki, “Einführung in die axiomatische Quantenfeldtheorie,” lectures given at the ETH, Zürich, 1961‐62, unpublished.
8.
W.
Driessler
,
S. J.
Summers
, and
E. H.
Wichmann
, “
On the connection between quantum fields and von Neumann algebras of local operators
,”
Commun. Math. Phys.
105
,
49
(
1986
).
9.
R. F. Streater and A. S. Wightman, PCT, Spin and Statistics, and All That (Benjamin, New York, 1964).
10.
R. Jost, The General Theory of Quantized Fields (American Mathematical Society, Providence, RI, 1965).
11.
S. J.
Summers
and
R.
Werner
, “
The vacuum violates Bell’s inequalities
,”
Phys. Lett. A
110
,
257
(
1985
).
12.
S. J.
Summers
and
R.
Werner
, “
Bell’s inequalities and quantum field theory, II: Bell’s inequalities are maximally violated in the vacuum
,”
J. Math. Phys.
28
,
2448
(
1987
).
13.
G. Ludwig, Foundations of Quantum Mechanics, I, II (Springer, New York, 1983).
14.
G. Ludwig, An Axiomatic Basis for Quantum Mechanics, I (Springer, New York, 1985).
15.
J. F.
Clauser
and
M. A.
Horne
, “
Experimental consequences of objective local theories
,”
Phys. Rev. D
10
,
526
(
1974
).
16.
R. Werner, “Bell’s inequalities and the reduction of statistical theories,” in Reduction in Science, edited by W. Balzer, D. A. Pearce, and H.‐J. Schmidt (Reidel, Amsterdam, 1984).
17.
S. J. Summers and R. Werner, “Bell’s inequalities and quantum field theory, I. General setting,” preprint, 1986.
18.
B. Z. Vulikh, Introduction to the Theory of Partially Ordered Spaces (Wolters‐Nordhoff, Groningen, 1967).
19.
Foundations of Quantum Mechanics and Ordered Linear Spaces, edited by A. Hartkämper and H. Neumann (Springer, New York, 1974).
20.
S. Sakai, C*Algebras andW*Algebras (Springer, New York, 1971).
21.
J. F.
Clauser
,
M. A.
Horne
,
A.
Shimony
, and
R. A.
Holt
, “
Proposed experiment to test local hidden‐variable theories
,”
Phys. Rev. Lett.
23
,
880
(
1969
).
22.
B. S.
Cirel’son
, “
Quantum generalizations of Bell’s inequalities
,”
Lett. Math. Phys.
4
,
93
(
1980
).
23.
H.
Neumann
and
R.
Werner
, “
Causality between preparation and registration processes in relativistic quantum theory
,”
Int. J. Theor. Phys.
22
,
781
(
1983
).
24.
H.‐J.
Borchers
, “
Über die Mannigfaltigkeit der interpolierenden Felder zu einer kausalen S‐matrix
,”
Nuovo Cimento
15
,
784
(
1960
).
25.
K.
Fredenhagen
and
J.
Hertel
, “
Local algebras of observables and pointlike localized fields
,”
Commun. Math. Phys.
80
,
551
(
1981
).
26.
J. Hertel, “Lokale Quantentheorie und Felder am Punkt,” Ph.D. thesis, Universität Hamburg, 1980.
27.
J.
Rehberg
and
M.
Wollenberg
, “
Quantum fields as pointlike localized objects
,”
Math. Nachr.
125
,
259
(
1986
).
28.
M. Wollenberg, “Quantum fields as pointlike localized objects, II,” preprint, Akademie der Wissenschaften der DDR, 1985.
29.
S. J. Summers, “From algebras of local observables to quantum fields: Generalized H‐bounds,” preprint, University of Rochester, 1987.
30.
W.
Driessler
and
S. J.
Summers
, “
Central decomposition of Poincaré‐invariant nets of local field algebras and absence of spontaneous breaking of the Lorentz group
,”
Ann. Inst. H. Poincaré
43
,
147
(
1985
).
31.
W.
Driessler
and
S. J.
Summers
, “
On the decomposition of relativistic quantum field theories into pure phases
,”
Helv. Phys. Acta
59
,
331
(
1986
).
32.
H.
Araki
, “
On the algebra of all local observables
,”
Prog. Theor. Phys.
32
,
844
(
1964
).
33.
H.
Araki
,
K.
Hepp
, and
D.
Ruelle
, “
Asymptotic behaviour of Wightman functions
,”
Helv. Phys. Acta
35
,
164
(
1962
).
34.
K.
Fredenhagen
, “
A remark on the cluster theorem
,”
Commun. Math. Phys.
97
,
461
(
1985
).
35.
P. Leyland, J. E. Roberts, and D. Testard, “Duality for quantum free fields,” preprint, CNRS CPT 78/1016, Marseille, 1978.
36.
G.
Benfatto
and
F.
Nicolo
, “
The local von Neumann algebras for the massless scalar free field and the free electromagnetic field
,”
J. Math. Phys.
19
,
653
(
1978
).
37.
D.
Buchholz
and
K.
Fredenhagen
, “
Dilatations and interaction
,”
J. Math. Phys.
18
,
1107
(
1977
).
38.
O. Brattelli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics II (Springer, New York, 1981).
39.
W.
Driessler
, “
Comments on lightlike translations and applications in relativistic quantum field theory
,”
Commun. Math. Phys.
44
,
133
(
1975
).
This content is only available via PDF.
You do not currently have access to this content.