It is shown that every Lorentz transformation can be decomposed into a helicity‐preserving transformation that changes the momentum of a free particle and a helicity‐changing transformation that leaves the momentum invariant. Since momentum‐preserving transformations constitute a subgroup of the Lorentz group, helicity‐preserving transformations form a coset space. It is shown further that, for massive particles, every Lorentz transformation can be decomposed into the Wigner rotation and helicity‐preserving transformations. For massless particles, every Lorentz transformation can be decomposed into the gauge transformation and helicity‐preserving transformation. The gauge transformation in this case is a Lorentz‐boosted Wigner rotation.
REFERENCES
1.
2.
3.
4.
A. S. Wightman, in Dispersion Relations and Elementary Particles, edited by C. De Witt and R. Omnes (Hermann, Paris, 1960);
E. P. Wigner, in Theoretical Physics, edited by A. Salam (International Atomic Energy Agency, Vienna, 1962);
M. Hamermesh, Group Theory (Addison‐Wesley, Reading, MA, 1962);
H.
van Dam
, Y. J.
Ng
, and L. C.
Biedenharn
, Phys. Lett. B
158
, 227
(1985
).5.
Y. S. Kim and M. E. Noz, Theory and Applications of the Poincaré Group (Reidel, Dordrecht, The Netherlands, 1986).
6.
7.
8.
E.
Inonu
and E. P.
Wigner
, Proc. Natl. Acad. Sci. USA
39
, 510
(1953
);S. Weinberg, in Lectures on Particles and Field Theory, Brandeis 1964, edited by S. Deser and K. W. Ford (Prentice‐Hall, Englewood Cliffs, NJ, 1965), Vol. 2;
J. D. Talman, Special Functions, A Group Theoretical Approach Based on Lectures by E. P. Wigner (Benjamin, New York, 1968);
9.
D.
Han
, Y. S.
Kim
, M. E.
Noz
, and D.
Son
, Am. J. Phys.
52
, 1037
(1984
);10.
J. J.
van der Bij
, H.
van Dam
, and Y. J.
Ng
, Physica (Utrecht) A
116
, 307
(1982
);11.
This content is only available via PDF.
© 1987 American Institute of Physics.
1987
American Institute of Physics
You do not currently have access to this content.