It is shown that every Lorentz transformation can be decomposed into a helicity‐preserving transformation that changes the momentum of a free particle and a helicity‐changing transformation that leaves the momentum invariant. Since momentum‐preserving transformations constitute a subgroup of the Lorentz group, helicity‐preserving transformations form a coset space. It is shown further that, for massive particles, every Lorentz transformation can be decomposed into the Wigner rotation and helicity‐preserving transformations. For massless particles, every Lorentz transformation can be decomposed into the gauge transformation and helicity‐preserving transformation. The gauge transformation in this case is a Lorentz‐boosted Wigner rotation.

1.
E. P.
Wigner
,
Rev. Mod. Phys.
29
,
255
(
1957
).
2.
Chou
Kuang‐Chao
and
L. G.
Zastavenco
,
Zh. Eksp. Teor. Fiz.
35
,
1417
(
1958
)
[
Chou
Kuang‐Chao
and
L. G.
Zastavenco
,
Sov. Phys. JETP
8
,
990
(
1959
)];
M.
Jacob
and
G. C.
Wick
,
Ann. Phys.
7
,
404
(
1959
).
3.
E. P.
Wigner
,
Ann. Math. (NY)
40
,
149
(
1939
).
4.
E. P.
Wigner
,
Z. Phys.
124
,
665
(
1948
);
A. S. Wightman, in Dispersion Relations and Elementary Particles, edited by C. De Witt and R. Omnes (Hermann, Paris, 1960);
E. P. Wigner, in Theoretical Physics, edited by A. Salam (International Atomic Energy Agency, Vienna, 1962);
M. Hamermesh, Group Theory (Addison‐Wesley, Reading, MA, 1962);
H.
van Dam
,
Y. J.
Ng
, and
L. C.
Biedenharn
,
Phys. Lett. B
158
,
227
(
1985
).
5.
Y. S. Kim and M. E. Noz, Theory and Applications of the Poincaré Group (Reidel, Dordrecht, The Netherlands, 1986).
6.
D.
Han
,
Y. S.
Kim
, and
D.
Son
,
J. Math. Phys.
27
,
2228
(
1986
).
7.
A.
Chakrabarti
,
J. Math. Phys.
5
,
1747
(
1964
).
8.
E.
Inonu
and
E. P.
Wigner
,
Proc. Natl. Acad. Sci. USA
39
,
510
(
1953
);
D. W.
Robinson
,
Helv. Phys. Acta
35
,
98
(
1962
);
D.
Korff
,
J. Math. Phys.
5
,
869
(
1964
);
S. Weinberg, in Lectures on Particles and Field Theory, Brandeis 1964, edited by S. Deser and K. W. Ford (Prentice‐Hall, Englewood Cliffs, NJ, 1965), Vol. 2;
J. D. Talman, Special Functions, A Group Theoretical Approach Based on Lectures by E. P. Wigner (Benjamin, New York, 1968);
S. P.
Misra
and
J.
Maharana
,
Phys. Rev. D
14
,
133
(
1976
).
9.
D.
Han
,
Y. S.
Kim
, and
D.
Son
,
Phys. Lett. B
131
,
327
(
1983
);
D.
Han
,
Y. S.
Kim
,
M. E.
Noz
, and
D.
Son
,
Am. J. Phys.
52
,
1037
(
1984
);
Y. S.
Kim
and
E. P.
Wigner
,
J. Math. Phys.
28
,
1175
(
1987
).
10.
S.
Weinberg
,
Phys. Rev.
135
,
B1049
(
1964
);
A.
Janner
and
T.
Jenssen
,
Physica (Utrecht)
53
,
1
(
1971
);
A.
Janner
and
T.
Jenssen
,
60
,
292
(
1972
); ,
Physica (Utrecht)
J. L.
Richard
,
Nuovo Cimento A
8
,
485
(
1972
);
J.
Kuperzstych
,
Nuovo Cimento B
31
,
1
(
1976
);
J.
Kuperzstych
,
Phys. Rev. D
17
,
629
(
1978
);
J. J.
van der Bij
,
H.
van Dam
, and
Y. J.
Ng
,
Physica (Utrecht) A
116
,
307
(
1982
);
D.
Han
,
Y. S.
Kim
, and
D.
Son
,
Phys. Rev. D
26
,
3717
(
1982
).
11.
D.
Han
and
Y. S.
Kim
,
Am. J. Phys.
49
,
348
(
1981
).
This content is only available via PDF.
You do not currently have access to this content.