The dynamical structure of any reasonable stochastic version of classical mechanics is investigated, including the version created by Nelson [E. Nelson, QuantumFluctuations (Princeton U.P., Princeton, NJ, 1985); Phys. Rev. 150, 1079 (1966)] for the description of quantum phenomena. Two different theories result from this common structure. One of them is the imaginary time version of Nelson’s theory, whose existence was unknown, and yields a radically new probabilistic interpretation of the heat equation. The existence and uniqueness of all the involved stochastic processes is shown under conditions suggested by the variational approach of Yasue [K. Yasue, J. Math. Phys. 22, 1010 (1981)].

1.
E. Nelson, Quantum Fluctuations (Princeton U.P., Princeton, NJ, 1985).
2.
E. Nelson, Dynamical Theories of Brownian Motion (Princeton U.P., Princeton, NJ, 1967).
3.
E.
Nelson
,
Phys. Rev.
150
,
1079
(
1966
).
4.
K. Ito, “Stochastic calculus,” in Springer Lecture Notes in Physics, Vol. 39 (Springer, New York, 1975), p. 218.
5.
E.
Carlen
,
Commun. Math. Phys.
94
,
293
(
1984
).
6.
K.
Yasue
,
J. Math. Phys.
22
,
1010
(
1981
).
7.
K.
Yasue
,
J. Funct. Anal.
41
,
327
(
1981
).
8.
W. A. Zheng and P. A. Meyer, “Quelques résultats de Mécanique stochastique,” in Séminaire de Probabilité XVIII (Springer, Berlin, 1984).
9.
J. C.
Zambrini
,
Int. J. Theor. Phys.
24
,
277
(
1985
).
10.
E.
Schrödinger
,
Ann. Inst. H. Poincaré
2
,
269
(
1932
).
11.
S. Bernstein, “Sur les liaisons entre les grandeurs aléatoires,” Verh. Int. Math. Zürich, Band 1 (1932).
12.
J. C.
Zambrini
,
Phys. Rev. A
33
,
1532
(
1986
).
13.
M. Kac, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability (Univ. California P., Berkeley, 1951), p. 189.
14.
B. Simon, Functional Integration and Quantum Physics (Academic, New York, 1979).
15.
B.
Jamison
,
Z. Wahrsch. Gebiete
30
,
65
(
1974
).
16.
E. B. Dynkin, “Markov processes,” Vols. I and II of Grundlehren der Math. Wissensch. (Springer, Berlin, 1965).
17.
E. Schrödinger, Sitzungsber. Preuss. Akad. Wiss. Phys. Math. Kl. 1931, 144.
18.
R.
Fortet
,
J. Math. Pures Appl.
IX
,
83
(
1940
).
19.
S. Albeverio, K. Yasue, and J. C. Zambrini, in preparation.
20.
W.
Feller
,
Ann. Math.
55
,
468
(
1952
).
21.
S.
Albeverio
and
R.
Ho/egh‐Krohn
,
J. Math. Phys.
15
,
1745
(
1974
).
22.
W. H.
Fleming
,
Appl. Math. Optim.
4
,
329
(
1978
).
23.
F.
Guerra
and
L.
Morato
,
Phys. Rev. D
27
,
1774
(
1983
).
24.
A.
Beurling
,
Ann. Math.
72
,
189
(
1960
).
This content is only available via PDF.
You do not currently have access to this content.