In order to study nonlinear ordinary differential equations with superposition principles, related to the exceptional simple Lie group G2, the complex and real forms of its Lie algebra are examined and their maximal subalgebras are summarized. In particular the parabolic subalgebras of the noncompact real form gNC2(R) are determined. Explicit matrix realizations of the fundamental representation D(1,0) are used and studied in connection with invariant subspaces in a seven‐dimensional (complex or real) vector space. The results are collected in three tables of specific interest for the study of nonlinear differential equations, which will be developed in Paper II of this series.
REFERENCES
1.
2.
R. L.
Anderson
, J.
Harnad
, and P.
Winternitz
, Lett. Math. Phys.
5
, 143
(1981
);R. L.
Anderson
, J.
Harnad
, and P.
Winternitz
, Physica D
4
, 164
(1982
).3.
J.
Harnad
, P.
Winternitz
, and R. L.
Anderson
, J. Math. Phys.
24
, 1062
(1982
).4.
5.
M.
del Olmo
, M. A.
Rodríguez
, and P.
Winternitz
, J. Math. Phys.
27
, 14
(1986
).6.
P. Winternitz, in Nonlinear Phenomena, Lecture Notes in Physics, Vol. 189, edited by K. B. Wolf (Springer, Berlin, 1983), pp. 265–331.
7.
S. Lie and G. Sheffers, Vorlesungen über continuierlichen Gruppen mit geometrischen undanderen Anwendungen (Teubner, Leipzig, 1983) [reprinted (Chelsea, New York, 1967)].
8.
N. Jacobson, Lie Algebras (Dover, New York, 1962).
9.
N. Jacobson, Exceptional Lie Algebras (Marcel Decker, New York, 1971).
10.
R. E.
Behrends
, J.
Dreitlein
, C.
Fronsdal
, and B. W.
Lee
, Rev. Mod. Phys.
34
, 1
(1962
).11.
12.
R.
Casalbuoni
, G.
Domokos
, and S.
Kövesi‐Domokos
, Nuovo Cimento
31
A, 423
(1976
).13.
R. D. Schafer, An Introduction to Nonassociative Algebras (Academic, New York, 1966).
14.
15.
16.
B. Judd, Second Quantization and Atomic Spectroscopy (Johns Hopkins, Baltimore, 1966).
17.
D. T. Sviridov and Yu. F. Smirnov, Teoriya opticheskykh spektrov ionov perekhodnykh metallov (Nauka, Moscow, 1977) (Theory of the Optical Spectra of Intermediate Metal Ions).
18.
19.
B.
Dorizzi
, B.
Grammaticos
, R.
Padjen
, and V.
Papageorgiou
, J. Math. Phys.
25
, 2200
(1984
).20.
J.
Beckers
, V.
Hussin
, and P.
Winternitz
, Lett. Math. Phys.
11
, 81
(1986
).21.
G. Warner, Harmonic Analysis on Semi‐Simple Lie Groups (Springer Berlin, 1972).
22.
23.
24.
R. P. Langlands, Problems in the Theory of Automorphic Forms in Lee tures in Modern Analysis and Applications III, Lecture Notes in Mathematics, Vol. 170 (Springer, Berlin, 1970), pp. 18–86.
25.
26.
R. W. Carter, Simple Groups of Lie Type (Wiley, New York, 1972).
27.
Oeuvres complète (Gauthier‐Villars, Paris, 1952).
28.
29.
J. E. Humphreys, Introduction to Lie Algebras and Representation Theor (Springer, New York, 1972).
30.
D. Rand, “PASCAL” “programs for identification of Lie algebras 1,” to appear in Comp. Phys. Commun.;
D. Rand, P. Winternitz, and H. Zassen haus, preprint, CRM‐1351, Montréal, 1986.
31.
32.
V. G. Kac, Infinite Dimensional Lie Algebras (Birkhäuser, Boston, 1983).
33.
34.
35.
D. Mitzman, thesis, State University of New Jersey at Rutgers, 1983.
36.
A. Barut and R. Racçzka, Theory of Group Representations and Applications (PWN, Polish Scientific, Warsaw, 1977).
37.
38.
39.
40.
Z. X. Wan, Lie Algebras (Pergamon, Oxford, 1975).
41.
J. F. Cornwell, Group Theory in Physics (Academic, London, 1984).
42.
J.
Patera
, P.
Winternitz
, and H.
Zassenhaus
, J. Math. Phys.
15
, 1378
, 1932
(1974
).43.
J.
Patera
, R. T.
Sharp
, P.
Winternitz
, and H.
Zassenhaus
, J. Math. Phys.
18
, 2259
(1977
).44.
45.
46.
47.
J.
Beckers
, J.
Harnad
, M.
Perroud
, and P.
Winternitz
, J. Math. Phys.
19
, 2126
(1978
).
This content is only available via PDF.
© 1986 American Institute of Physics.
1986
American Institute of Physics
You do not currently have access to this content.