A concept of a Gel’fand–Zetlin pattern for the Lie superalgebra sl(1,3) is introduced. Within every finite‐dimensional irreducible sl(1,3) module the set of the Gel’fand–Zetlin patterns constitute an orthonormed basis, called a Gel’fand–Zetlin basis. Expressions for the transformation of this basis under the action of the generators are written down for every finite‐dimensional irreducible representation.

1.
T. D.
Palev
,
J. Math. Phys.
26
,
1640
(
1985
).
2.
T. D. Palev, “Finite‐dimensional representations of the Lie superalgebra sl(1,3) in a Gel’fand basis. II. Nontypical representations,” preprint INRNE, Sofia, 1985.
3.
I. M.
Gel’fand
and
M. L.
Zetlin
,
Dokl. Akad. Nauk. SSSR
71
,
825
(
1950
).
4.
V. G.
Kac
,
Lect. Notes Math.
626
,
597
(
1978
).
5.
V. G.
Kac
,
Adv. Math.
26
,
8
(
1977
).
This content is only available via PDF.
You do not currently have access to this content.