One‐parameter subgroups, the exponential mapping, and canonical coordinates have previously been defined for connected supergroups. In this paper, a technique for obtaining analytical expressions linking different coordinate schemes for supergroups is presented. These are the Baker–Campbell–Hausdorff relations. The method is illustrated in detail with the examples of supergroups based on the supersymmetric quantum‐mechanical superalgebra sqm (2) and on the Inönü–Wigner contraction isop(1/2) of the simple superalgebra osp(1/2).

1.
J. E.
Campbell
,
Proc. London Math. Soc. (1)
28
,
381
(
1897
);
H. F.
Baker
,
Proc. London Math. Soc. (1)
34
,
347
(
1902
);
H. F.
Baker
,
35
,
333
(
1903
);
(2)
H. F.
Baker
,
2
,
293
(
1905
);
F.
Hausdorff
,
Ber. Verh. Saechs. Akad. Wiss. Leipzig Math. Phys. Kl.
58
,
19
(
1906
).
2.
See, for example,
R. M.
Wilcox
,
J. Math. Phys.
8
,
962
(
1967
);
B.
Mielnik
,
Ann. Inst. H. Poincaré A
12
,
215
(
1970
);
R. Gilmore, Lie Groups, Lie Algebras, and Some of Their Applications (Wiley, New York, 1974).
3.
D. R.
Truax
,
Phys. Rev. D
31
,
1988
(
1985
).
4.
F. A.
Berezin
and
G. I.
Kac
,
Math. USSR‐Sb.
11
,
311
(
1970
);
B. Kostant, in Lecture Notes in Mathematics, Vol. 570 (Springer, New York, 1977), p. 617.
5.
A.
Salam
and
J.
Strathdee
,
Nucl. Phys. B
76
,
477
(
1974
).
6.
V. Rittenberg, in Lecture Notes in Physics, Vol. 79 (Springer, Berlin, 1978), p. 3;
F. A.
Berezin
and
V. N.
Tolstoy
,
Commun. Math. Phys.
78
,
409
(
1981
);
see also I. Bars, in Supersymmetry in Physics, edited by V. A. Kostelecký and D. K. Campbell (North‐Holland, Amsterdam, 1985), p. 42
[also published as
Physica D
15
,
42
(
1985
)].
7.
A.
Rogers
,
J. Math. Phys.
21
,
1352
(
1980
).
8.
A.
Rogers
,
J. Math. Phys.
22
,
939
(
1981
).
9.
F. A.
Berezin
and
D. A.
Leites
,
Sov. Math. Dokl.
16
,
1218
(
1975
);
M.
Batchelor
,
Trans. Am. Math. Soc.
253
,
329
(
1979
);
M.
Batchelor
,
258
,
257
(
1980
).,
Trans. Am. Math. Soc.
10.
A.
Rogers
,
J. Math. Phys.
22
,
443
(
1981
);
A.
Rogers
,
26
,
385
(
1985
); ,
J. Math. Phys.
C. P.
Boyer
and
S.
Gitler
,
Trans. Am. Math. Soc.
258
,
241
(
1984
);
J.
Hoyos
,
M.
Quiros
,
J.
Ramirez Mittelbrunn
, and
F. J.
de Urries
,
J. Math. Phys.
25
,
833
,
841
(
1984
);
J. M.
Rabin
and
L.
Crane
,
Commun. Math. Phys.
102
,
123
(
1985
).
11.
D. R.
Truax
,
V. A.
Kostelecký
, and
M. M.
Nieto
,
J. Math. Phys.
27
,
354
(
1986
).
12.
V. A.
Kostelecký
,
Nucl. Phys. B
219
,
167
(
1983
);
V. A.
Kostelecký
and
J. M.
Rabin
,
J. Math. Phys.
25
,
2744
(
1984
).
13.
E.
Inönü
and
E. P.
Wigner
,
Proc. Natl. Acad. Sci. USA
39
,
510
(
1953
).
14.
See, for example, W. Miller, Jr., Symmetry Groups and Their Applications (Academic, New York, 1972).
15.
E. L. Ince, Ordinary Differential Equations (Dover, New York, 1956).
16.
This superalgebra has recently enjoyed great popularity. See, for example,
E.
Witten
,
Nucl. Phys. B
185
,
513
(
1981
);
M.
de Crombrugghe
and
V.
Rittenberg
,
Ann. Phys. (NY)
151
,
99
(
1983
);
P.
Salomonson
and
J. W.
van Holten
,
Nucl. Phys. B
196
,
509
(
1982
);
F.
Cooper
and
B.
Freedman
,
Ann. Phys. (NY)
146
,
262
(
1983
);
F.
Cooper
,
B.
Freedman
, and
C. M.
Bender
,
Nucl. Phys. B
219
,
61
(
1983
);
D.
Lancaster
,
Nuovo Cimento A
79
,
28
(
1984
);
M. M.
Nieto
,
Phys. Lett. B
145
,
208
(
1984
).
Proposed physical applications are discussed in
L. F.
Urrutia
and
E.
Hernandez
,
Phys. Rev. Lett.
51
,
755
(
1983
);
V. A.
Kostelecký
and
M. M.
Nieto
,
Phys. Rev. Lett.
53
,
2285
(
1984
).
17.
We remark that this is not true in general. Although pp = 0 for p∈1BL,pṗ may be nonvanishing.
This content is only available via PDF.
You do not currently have access to this content.