In a Hilbert space ℋ, discrete families of vectors {hj} with the property that f=∑j〈hj‖ f〉hj for every f in ℋ are considered. This expansion formula is obviously true if the family is an orthonormal basis of ℋ, but also can hold in situations where the hj are not mutually orthogonal and are ‘‘overcomplete.’’ The two classes of examples studied here are (i) appropriate sets of Weyl–Heisenberg coherent states, based on certain (non‐Gaussian) fiducial vectors, and (ii) analogous families of affine coherent states. It is believed, that such ‘‘quasiorthogonal expansions’’ will be a useful tool in many areas of theoretical physics and applied mathematics.
REFERENCES
1.
R. M. Young, An Introduction to Non‐harmonic Fourier Series (Academic, New York, 1980).
2.
R. J.
Duffin
and A. C.
Schaeffer
, Trans. Am. Math. Soc.
72
, 341
(1952
).3.
I. Daubechies and A. Grossmann “Frames in the Bargmann space of entire functions” (to be published).
4.
A. Grossmann and J. Morlet, “Decomposition of functions into wavelets of constant shape, and related transforms,” to appear in Mathematics and Physics, Lectures on Recent Results (World Scientific, Singapore, 1985);
P.
Goupillaud
, A.
Grossmann
, and J.
Morlet
, Geoexploration
23
, 85
(1984
).5.
M. Bertero, C. De Mol, and G. Viano, “The stability of inverse problems,” in Inverse Scattering Problems in Optics, edited by H. P. Bakes (Springer, Berlin, 1980).
6.
(b) S. A. Gaal, Linear Analysis and Representation Theory (Springer, Berlin, 1973);
(c)
A.
Grossmann
, J.
Morlet
, and T.
Paul
, J. Math. Phys.
26
, 2473
(1985
).7.
J. von Neumann, Mathematical Foundation of Quantum Mechanics (Princeton U.P., Princeton, NJ, 1985) (English translation).
8.
V.
Bargmann
, P.
Butera
, L.
Girardello
, and J. R.
Klauder
, Rep. Math. Phys.
2
, 221
(1971
).9.
10.
(a)
H.
Bacry
, A.
Grossmann
, and J.
Zak
, Phys. Rev. B
12
, 1118
(1975
);11.
12.
A. Grossmann and T. Paul, “Wave functions on subgroups of the group of affine canonical transformations,” in Lecture Notes in Physics, Vol. 211 (Springer, Berlin, 1984).
13.
(a) Y. Meyer, “La transformation en ondellettes et les nouveaux paraproduits,” to be published;
(b) M. Frasier and B. Jawerth, “Decomposition of Besov spaces,” to be published.
14.
Y. Meyer, “La transformation en ondelettes: de la recherche pétrolière á la géométrie des espaces de Banach,” to be published; P. G. Lemarié and Y. Meyer, “Ondelettes et bases hilbertiennes,” to be published.
15.
A. Grossmann and T. Paul (in preparation).
16.
J. Klauder and B. S. Skagerstam, Coherent States. Applications in Physics and Mathematical Physics (World Scientific, Singapore, 1985).
17.
J. Zak, in Solid State Physics, edited by H. Ehrenreich, F. Seitz, and D. Turnbull (Academic, New York, 1972), Vol. 27.
18.
M. Abramowitz and I. Stegun, Handbook of Mathematical Functions (Dover, New York, 1964).
19.
E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, II (Springer, Berlin, 1970).
20.
C. de Boor, A Practical Guide to Splines (Springer, Berlin, 1978).
This content is only available via PDF.
© 1986 American Institute of Physics.
1986
American Institute of Physics
You do not currently have access to this content.