The differential equation, x(xx0)(d2y/dx2)+(B1+B2x) (dy/dx)+[ω2x(xx0) −[2ηω(xx0)+B3]y=0, arises both in the quantum scattering theory of nonrelativistic electrons from polar molecules and ions, and, in the guise of Teukolsky’s equations, in the theory of radiation processes involving black holes. This article discusses analytic representations of solutions to this equation. Previous results of Hylleraas [E. Hylleraas, Z. Phys. 71, 739 (1931)], Jaffé [G. Jaffé, Z. Phys. 87, 535 (1934)], Baber and Hassé [W. G. Baber and H. R. Hassé, Proc. Cambridge Philos. Soc. 25, 564 (1935)], and Chu and Stratton [L. J. Chu and J. A. Stratton, J. Math. Phys. (Cambridge, Mass.) 20, 3 (1941)] are reviewed, and a rigorous proof is given for the convergence of Stratton’s spherical Bessel function expansion for the ordinary spheroidal wave functions. An integral is derived that relates the eigensolutions of Hylleraas to those of Jaffé. The integral relation is shown to give an integral equation for the scalar field quasinormal modes of black holes, and to lead to irregular second solutions to the equation. New representations of the general solutions are presented as series of Coulomb wave functions and confluent hypergeometric functions. The Coulomb wave‐function expansion may be regarded as a generalization of Stratton’s representation for ordinary spheroidal wave functions, and has been fully implemented and tested on a digital computer. Both solutions given by the new algorithms are analytic in the variable x and the parameters B1, B2, B3, ω, x0, and η, and are uniformly convergent on any interval bounded away from x0. They are the first representations for generalized spheroidal wave functions that allow the direct evaluation of asymptotic magnitude and phase.

1.
W. H.
Press
and
S. A.
Teukolsky
,
Astrophys. J.
185
,
649
(
1973
).
2.
C. W.
Clark
,
Phys. Rev. A
20
,
1875
(
1979
).
3.
S. Detweiler, in Sources of Gravitational Radiation, edited by L. Smarr (Cambridge U.P., London, 1979), p. 217.
4.
E. W. Leaver, “A spectral decomposition of the perturbation response of the Schwarzschild geometry,” submitted to Phys. Rev. D.
5.
W. G.
Baber
and
H. R.
Hassé
,
Proc. Cambridge Philos. Soc.
25
,
564
(
1935
).
6.
W.
Gautschi
,
SIAM Rev.
9
,
24
(
1967
).
7.
E.
Hylleraas
,
Z. Phys.
71
,
739
(
1931
).
8.
G.
Jaffé
,
Z. Phys.
87
,
535
(
1934
).
9.
J. Meixner, F. S. Schäfke, and G. Wolf, “Mathieu Functions and Spheroidal Functions and their Mathematical Foundations (further studies),” in Lecture Notes in Mathematics, Vol. 837 (Springer, Berlin, 1980).
10.
P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw‐Hill, New York, 1953).
11.
E. W.
Leaver
,
Proc. R. Soc. Lond. Ser. A
402
,
285
(
1985
).
12.
H. Eyring, J. Walter, and G. E. Kimball, Quantum Chemistry (Wiley, New York, 1948).
13.
J. A.
Wheeler
,
Phys. Rev.
97
,
511
(
1955
).
14.
T.
Regge
and
J. A.
Wheeler
,
Phys. Rev.
108
,
1063
(
1957
).
15.
F. J.
Zerilli
,
Phys. Rev. D
2
,
2141
(
1970
).
16.
S.
Chandrasekhar
,
Proc. R. Soc. Lond. Ser. A
343
,
289
(
1975
).
17.
S.
Chandrasekhar
and
S.
Detweiler
,
Proc. R. Soc. Lond. Ser. A
344
,
441
(
1975
).
18.
S. A.
Teukolsky
,
Phys. Rev. Lett.
29
,
1114
(
1972
).
19.
R. H.
Price
,
Phys. Rev. D
5
,
2419
(
1972
).
20.
C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman, San Francisco, 1973), exercise 32.10.
21.
S. Chandrasekhar, The Mathematical Theory of Black Holes (Clarendon, Oxford, 1983).
22.
A. N. Lowan, in Handbook of Mathematical Functions, edited by M. Abramowitz and I. Stegun (National Bureau of Standards, Washington, 1964), Chap. 21. There are other definitions for the oblate coordinates λ and μ.
23.
E. D.
Fackerell
and
R. G.
Crossman
,
J. Math. Phys.
18
,
1849
(
1977
).
24.
R. A.
Breuer
,
M. P.
Ryan
, and
S.
Waller
,
Proc. R. Soc. Lond. Ser. A
358
,
71
(
1977
).
25.
C.
Hunter
and
B.
Guerrieri
,
Stud. Appl. Math.
66
,
217
(
1982
).
26.
V.
Ferrari
and
B.
Mashhoon
,
Phys. Rev. D
30
,
295
(
1984
).
27.
A. H.
Wilson
,
Proc. R. Soc. Lond. Ser. A
118
,
617
(
1928
).
28.
L. J. Slater, in Handbook of Mathematical Functions, edited by M. Abramowitz and I. Stegun (National Bureau of Standards, Washington, 1964), Chap. 13.
29.
I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Academic, New York, 1965).
30.
S.
Chandrasekhar
,
Proc. R. Soc. Lond. Ser. A
392
,
1
(
1984
).
31.
A. L. Rabenstein, Introduction to Ordinary Differential Equations (Academic, New York, 1966).
32.
E. L. Ince, Ordinary Differential Equations (Dover, New York, 1926), p. 201.
33.
I. S. Gradshteyn and I. M. Ryzhik, Ref. 29, Eq. 7.414.8.
34.
J. A.
Stratton
,
Proc. Natl. Acad. Sci. U.S.A.
21
,
51
,
316
(
1935
). We use the term “Stratton solution” somewhat loosely, as a very important generalization was made in a subsequent paper coauthored by L. J. Chu (see Ref. 38).
Contributions were also made by Morse [
P. M.
Morse
,
Proc. Natl. Acad. Sci. U.S.A.
21
,
56
(
1935
): also see Ref. 10].
35.
P. M. Morse and H. Feshbach, Ref. 10, Eq. 11.3.87.
36.
P. M. Morse and H. Feshbach, Ref. 10, Eq. 11.3.39.
37.
P. M. Morse and H. Feshbach, Ref. 10, p. 1503. There are brackets missing from the expression for βn in some editions of the book.
38.
The generalized expansions (86) and (87) were first given by Chu and Stratton [
L. J.
Chu
and
J. A.
Stratton
,
J. Math. Phys. (Cambridge, Mass.)
20
,
259
(
1941
)],
and reprinted in Spheroidal Wave Functions [J. A. Stratton, P. M. Morse, L. J. Chu, J. D. C. Little, and F. J. Corbató (Wiley, New York, 1956)].
Our present equations (89) and (90) are completely equivalent to Eqs. (95) and (96) of Chu and Stratton, the important difference being that in the present study we regard the separation constant Alm as being fixed, and use these equations to define the characteristic value of the phase parameter ν.
39.
P. M. Morse and H. Feshbach, Ref. 10, p. 1507.
40.
B. P.
Sinha
and
R. H.
Macphie
,
J. Math. Phys.
16
,
2378
(
1975
).
41.
L.
Jen
and
C.
Hu
,
IEEE Trans. Antennas Propag.
31
,
382
(
1983
).
42.
R.
Penrose
,
Nuovo Cimento
1
(special number),
252
(
1969
).
43.
S. A.
Teukolsky
and
W. H.
Press
,
Astrophys. J.
193
,
443
(
1974
).
44.
S.
Detweiler
,
Astrophys. J.
239
,
292
(
1980
).
45.
A. R.
Barnett
,
D. H.
Feng
,
J. W.
Steed
, and
L. J. B.
Goldfarb
,
Comput. Phys. Commun.
8
,
377
(
1974
).
46.
E. W. Leaver, “GSWFN—Generalized spheroidal wave‐functions for complex arguments,” to be submitted to Trans. Math. Software.
47.
A. Messiah, Quantum Mechanics (North‐Holland, Amsterdam, 1958).
48.
E. C. Titchmarsh, Eigenfunction Expansions Associated with Second Order Differential Equations (Oxford U.P., New York, 1962).
49.
E. L. Ince, Ref. 32, Chap. 5.
This content is only available via PDF.
You do not currently have access to this content.