Using a computer, the Fermi surface for the one‐electron model of an infinite crystal in three dimensions with zero range interactions, i.e., with so‐called point interactions, is studied. A computer program is available which has, as input, the crystal structure, the scattering length of the solid considered, and the Fermi energy, and, as output, a drawing of the corresponding Fermi surface inside its Brillouin zone.

1.
A. P. Cracknell and K. C. Wong, The Fermi Surface (Oxford U.P., London, 1973).
2.
J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics (Springer, Berlin, 1979).
3.
K. Huang, Statistical Mechanics (Wiley, London, 1963).
4.
R.
Kronig
and
W. G.
Penney
, “
Quantum mechanics of electrons in crystal lattices
,”
Proc. R. Soc. London Ser. A
130
,
499
(
1931
).
5.
G. Flamand, “Mathematical theory of nonrelativistic two‐ and three‐particle systems with point interactions,” in Cargèse Lectures in Theoretical Physics, edited by F. Lurgat (Gordon and Breach, New York, 1967).
6.
A.
Grossmann
,
R.
Ho/egh‐Krohn
, and
M.
Mebkhout
, “
A class of explicitly soluble, local, many‐center Hamiltonians for one‐particle quantum mechanics in two and three dimensions I
,”
J. Math. Phys.
21
,
2376
(
1980
).
7.
A.
Grossmann
,
R.
Ho/egh‐Krohn
, and
M.
Mebkhout
, “
The one‐particle theory of periodic point interactions
,”
Commun. Math. Phys.
77
,
87
(
1980
).
8.
R.
Ho/egh‐Krohn
,
H.
Holden
, and
F.
Martinelli
, “
The spectrum of defect periodic point interactions
,”
Lett. Math. Phys.
7
,
221
(
1983
).
9.
S. Albeverio, F. Gesztesy, H. Holden, and R. Ho/egh‐Krohn, Solvable Models in Quantum Mechanics (book in preparation).
10.
S.
Albeverio
,
J. E.
Fenstad
, and
R.
Ho/fegh‐Krohn
, “
Singular perturbations and nonstandard analysis
,”
Trans. Am. Math. Soc.
252
,
275
(
1979
).
11.
The computer program uses subroutines from IMSL for the numerical part and GPGS‐F for the graphical part.
12.
H.
Holden
,
R.
Ho/fegh‐Krohn
, and
S.
Johannesen
, “
The short‐range expansion in solid state
,”
Ann. Inst. H. Poincaré Sect. A
41
,
333
(
1984
).
13.
C. H. Kittel, Introduction to Solid State Physics (Wiley, New York, 1976), 5th ed.
14.
B. Simon, Quantum Mechanics for Hamiltonians Defined as Quadratic Forms (Princeton U.P., Princeton, NJ, 1971).
This content is only available via PDF.
You do not currently have access to this content.