Time‐independent wave propagation is treated in media where the index of refraction contains a random component, but its mean is invariant with respect to translation in some direction distinguishing the wave propagation. Abstract splitting operators are used to decompose the wave field into forward and backward traveling components satisfying a coupled pair of equations. Mode‐coupled equations follow directly from these after implementing a specific representation for the abstract splitting operators. Here we indicate a formal solution to these equations, concentrating on the diffusion regime, where we estimate the forward‐ and backscattering contributions to the mode specific diffusion coefficients. We consider, in detail, random media with uniform (random atmosphere) and square law (stochastic lense) mean refractive indices.

1.
See, for example,
H.
Bremmer
,
Commun. Pure Appl. Math.
4
,
105
(
1951
);
F. V.
Atkinson
,
J. Math. Anal. Appl.
1
,
255
, (
1985
);
J. A.
Arnaud
,
Bell Syst. Tech. J.
49
,
2311
(
1970
);
J.
Corones
,
J. Math. Anal. Appl.
50
,
361
(
1975
);
D.
Dudley
and
A. P.
Wang
,
J. Math. Phys.
24
,
1470
(
1983
).
2.
L. Fishman and J. J. McCoy, in Applications of Mathematics to Modem Optics, edited by W. H. Carter (SPIE, Bellingham, WA, 1982), Vol. 358, p. 168;
J. Math. Phys.
25
,
285
(
1984
).
3.
J. P. Corones, M. E. Davison, and R. J. Krueger, “A general approach to splitting and invariant imbedding techniques for linear wave equations,” in Inverse Optics, Proceedings of the SPIE 413, edited by A. J. Devaney (SPIE, Bellingham, WA, 1983), p. 102;
J. P.
Corones
and
R. J.
Krueger
,
J. Math. Phys.
24
,
2301
(
1983
);
M. E. Davison, “A general approach to splitting and invariant imbedding techniques for linear wave equations,” Ames Laboratory Preprint, 1982.
4.
J. W. Evans and J. P. Corones, “Splitting methods for time‐independent wave propagation in focussing media and wave guides,” Ames Laboratory Preprint, 1985.
5.
U. Frisch, in Probabilistic Methods in Applied Mathematics, edited by A. T. Bharucha‐Reid (Academic, New York, 1968), Vol. 1.
6.
R. Z.
Khasminskii
,
Theory Probab. Appl.
11
,
390
(
1966
);
G. C.
Papanicolaou
and
J. B.
Keller
,
Siam J. Appl. Math.
20
,
287
(
1971
);
W. Kohler and G. C. Papanicolaou, in “Wave propagation and underwater acoustics,” in Lecture Notes in Physics, Vol. 70, edited by J. B. Keller and J. S. Papadakis (Springer, New York, 1977);
G. C.
Papanicolaou
and
W. E.
Kohler
,
Commun. Pure Appl. Math.
27
,
641
(
1974
);
W. E.
Kohler
,
Wave Motion
4
,
243
(
1982
).
7.
J. Mathews and R. L. Walker, Mathematical Methods of Physics (Benjamin, Reading, MA, 1964), 2nd ed.
8.
V. I.
Klyatskin
and
V. I.
Tatarskii
,
Sov. Phys. JETP
31
,
335
(
1970
).
9.
J. Corones and D. W. McLaughlin, “The parabolic approximation in focusing media” (unpublished manuscript);
D. W. McLaughlin, “Accuracy of the parabolic and diffusion approximation” (unpublished manuscript).
10.
G. C.
Papanicoloau
,
D.
McLaughlin
, and
R.
Burridge
,
J. Math. Phys.
14
,
84
(
1973
);
D.
Marcuse
,
Bell Syst. Tech. J.
53
,
195
(
1974
).
11.
I. M.
Besieris
,
J. Math. Phys.
19
,
2533
(
1978
).
This content is only available via PDF.
You do not currently have access to this content.