In general, if the parameters of a real or complex algebraic matrix group are replaced by Grassmann parameters, without changing the algebraic constraints, the resulting set fails to form a group. It is shown how to remedy this defect of naive Grassmannification by generalizing the constraint relations. In particular, it is shown how to define Grassmann analogs of the orthogonal, unitary, and symplectic groups.

1.
D.
Ebner
,
Gen. Relativ. Gravit.
14
,
1001
(
1982
).
2.
V.
Rittenberg
and
M.
Scheunert
,
J. Math. Phys.
19
,
709
(
1978
).
3.
V. Rittenberg, “Group Theoretical Methods in Physics, Tubingen, 1977” in Lecture Notes in Physics, Vol. 79 (Springer‐Verlag, Berlin, 1978).
4.
A.
Rogers
,
J. Math. Phys.
22
,
939
(
1981
);
R.
Cianci
,
J. Math. Phys.
25
,
451
(
1984
); ,
J. Math. Phys.
J. Hoyos, M. Quiros, J. Ramirez Mittelbrunn, and F. J. de Urries, ibid 833 (1984);
R. F.
Picken
,
J. Phys. A: Math. Gen.
16
,
3457
(
1983
).
5.
P.
van Niewenhuizen
,
Phys. Rep. C
68
,
189
(
1981
).
6.
N. B.
Backhouse
and
A. G.
Fellouris
,
J. Phys. A: Math. Gen.
17
,
1389
(
1984
).
7.
M. Hall, The Theory of Groups (Macmillan, New York, 1959);
J. Rotman, The Theory of Groups (Allyn and Bacon, Boston, 1965).
8.
G. D. Mostov, J. H. Sampson, and J.‐P. Meyer, Fundamental Structures of Algebra (McGraw‐Hill, New York, 1963).
This content is only available via PDF.
You do not currently have access to this content.