A fundamental result of Geroch is that a space‐time admits a spinor structure if and only if it is parallelizable. A nonsymmetric, metric‐compatible curvature‐free connection is associated with a global orthonormal tetrad field on such a parallelizable space‐time. This connection is used to examine reported inconsistencies for S> 1/2 spinor field equations on general space‐times. It is shown that the assumed Levi–Civita transport of Clifford units causes the inconsistencies at the Klein–Gordon stage. The relation of the torsion tensor of the parallelization connection to the space‐time topology is indicated and the Lorentz covariance of the modified Klein–Gordon equations is demonstrated. A particularly simple plane‐wave solution form for free‐field equations is shown to result for locally flat space‐times for which the torsion tensor is necessarily zero.

1.
F. G. Friedlander, The Wave Equation on a Curved Spacetime (Cambridge U.P., Cambridge, 1975).
2.
G. W. Gibbons, in General Relativity—An Einstein Centenary Survey, edited by S. W. Hawking and I. Israel (Cambridge U.P., Cambridge, 1979), Chap. 13.
3.
H.
Buchdahl
,
Nuovo Cimento
10
,
96
(
1958
);
H.
Buchdahl
,
25
,
486
(
1962
). ,
Nuovo Cimento
Also,
H.
Buchdahl
,
Classical Quantum Gravit.
1
,
189
(
1984
);
H.
Buchdahl
,
J. Phys. A: Math. Nucl. Gen.
15
,
1
(
1982
);
H.
Buchdahl
,
15
,
1057
(
1982
).
4.
A.
Fordy
,
Gen. Relativ. Gravit.
98
,
387
(
1978
).
5.
S. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972), Chap. 12.
6.
J.
Dowker
,
Phys. Rev. D
28
,
3013
(
1983
). Here as in many other papers dealing with the reported field equation inconsistencies, the proper Lorentz generators σv(x) should be used in a local‐coordinate basis rather than the constant tetrad‐basis generators σab (labeled σμν). Also the local coordinate gradient μ = ∂μ for the spin12 case.
7.
S. Chandrasekhar, Ref. 2, Chap. 7.
8.
J.
Centrella
and
R. A.
Matzner
,
Phys. Rev. D
25
,
930
(
1982
).
9.
R.
Geroch
,
J. Math. Phys.
9
,
1739
(
1968
);
R.
Geroch
,
J. Math. Phys.
11
,
343
(
1970
).
10.
J. R.
Urani
and
G. P.
Barker
,
J. Math. Phys.
24
,
2407
(
1983
).
11.
C. T. J. Dodson, Categories, Bundles and Spacetimes Topology (Shiva, Orpington, England 1980), p. 149.
12.
R. L. Bishop and S. I. Goldberg, Tensor Analysis on Manifolds (Dover, New York, 1980), p. 247.
13.
S.
Deser
and
C. J.
Isham
,
Phys. Rev. D
14
,
2505
(
1976
).
See also,
S. B.
Edgar
,
Gen. Relativ. Gravit.
12
,
347
(
1980
).
14.
F.
Heyl
,
P.
von der Heyde
, and
G.
Kerlick
,
Rev. Mod. Phys.
48
,
393
(
1976
).
15.
;A. Pais, Subtle is the Lord… (Oxford, New York, 1982).
16.
W. Poor, Differential Geometric Structures (McGraw‐Hill, New York, 1981), p. 99.
17.
The Dirac field is a general scalar and a Lorentz spinor, thus μψ = ∂μψ. A change of tetrad requires Dμ = ∂μμ (Ref. 5).
18.
C. Misner, K. Thome, and J. Wheelar, Gravitation (Freeman, San Francisco, 1973).
19.
S. Avis and C. Isham, Recent Developments in Gravitation. Cargese 1978, edited by M. Levy, and S. Deser (Plenum, New York, 1979).
20.
J. Urani, Phys. Rev. D (submitted).
21.
S. Hawking and G. Ellis, The Large Scale Structure of Spacetime (Cambridge U.P., Cambridge, 1973).
This content is only available via PDF.
You do not currently have access to this content.