In this paper we construct a class of integrable Hamiltonian nonlinear evolution equations generated by a purely differential recursion operator. It turns out that this hierarchy is a complex version of the Burgers hierarchy and can be linearized through a generalization of the Cole–Hopf transformation.

1.
See, for instance, the basic works of
V. E.
Zakharov
and
L. D.
Faddeev
,
Funct. Anal. Appl.
5
,
280
(
1971
);
C. S.
Gardner
,
J. Math. Phys.
12
,
1548
(
1971
);
and
V. E.
Zakharov
and
A. B.
Shabat
,
Sov. Phys. JETP
34
,
63
(
1972
).
2.
F.
Magri
,
J. Math. Phys.
19
,
1167
(
1978
);
A.
Fokas
and
B.
Fuchssteiner
,
Physica D
4
,
47
(
1981
).
3.
A table of the recursion operators for the more relevant integrable NEE’s can be found in
F.
Magri
,
Lect. Notes Phys.
120
,
233
(
1980
).
4.
D. V.
Choodnovsky
and
G. V.
Choodnovsky
,
Nuovo Cimento B
40
,
339
(
1977
).
5.
D.
Levi
,
O.
Ragnisco
, and
M.
Bruschi
,
Nuovo Cimento B
74
,
33
(
1983
).
6.
I. M.
Gel’Fand
and
L. A.
Dikii
,
Usp. Math. Nauk.
30
,
67
(
1975
);
D. R. Lebedev and Yu. A. Manin, “Gel’Fand‐Dikii Hamiltonian operator and coadjoint representation of Volterra group” (to appear);
Yu. A.
Manin
,
J. Sov. Math.
11
,
1
(
1979
);
B. A.
Kupershmidt
and
G.
Wilson
,
Invent. Math.
63
,
403
(
1981
);
M.
Adler
,
Invent. Math.
50
,
219
(
1979
).
7.
F. Magri and C. Morosi, “A geometrical characterization of integrable Hamiltonian systems through the theory of Poisson‐Nijenhuis manifolds,” Preprint Universită di Milano (to appear).
This content is only available via PDF.
You do not currently have access to this content.