We consider the kinetics of processes where the sites of a Bethe lattice are filled irreversibly and, in general, cooperatively by monomers, dimers, or polyatomics. For nearest neighbor and sometimes more general cooperative effects (including random filling as a special case), we show that the infinite hierarchy of rate equations for probabilities of empty subconfigurations can be exacty truncated and solved using a shielding property of empty sites. We indicate, in certain cases, a connection between these Bethe lattice solutions and certain approximate truncation solutions for corresponding processes on ‘‘physical’’ 2‐D and 3‐D lattices with the same coordination number.

1.
Graph Theory and Theoretical Physics, edited by F. Harary (Academic, London, 1967);
R. J. Wilson, Introduction to Graph Theory (Oliver & Boyd, Edinburgh, 1972).
2.
J. M. Ziman, Models of Disorder (Cambridge U.P., Cambridge, 1979).
3.
J. W.
Evans
,
D. R.
Burgess
, and
D. K.
Hoffman
,
J. Chem. Phys.
79
,
5011
(
1983
).
4.
N. O.
Wolf
,
J. W.
Evans
, and
D. K.
Hoffman
,
J. Math. Phys.
25
,
2519
(
1984
).
5.
K. J.
Vette
,
T. W.
Orent
,
D. K.
Hoffman
, and
R. S.
Hansen
,
J. Chem. Phys.
60
,
4854
(
1974
).
6.
P. J.
Flory
,
J. Chem. Soc.
61
,
1518
(
1939
).
7.
J. W. Evans and R. S. Nord, J. Stat. Phys. (submitted).
8.
J. W.
Evans
and
D. R.
Burgess
,
J. Chem. Phys.
79
,
5023
(
1983
).
9.
I. R.
Epstein
,
Biopolymers
18
,
765
(
1979
).
10.
N. A.
Plate
,
A. D.
Litmanovich
,
O. V.
Noah
,
A. L.
Toam
, and
N. B.
Vasileyev
,
J. Polymer Sci.
12
,
2165
(
1974
).
11.
J. W.
Evans
,
D. K.
Hoffman
, and
D. R.
Burgess
,
J. Chem. Phys.
80
,
936
(
1984
).
12.
D. K.
Hoffman
,
J. Chem. Phys.
69
,
3438
(
1978
).
13.
J. W.
Evans
,
Physica
123A
,
297
(
1984
).
This content is only available via PDF.
You do not currently have access to this content.