We propose a method for regularizing singular Lagrangians by adding new degrees of freedom. We illustrate this regularization method with some particular examples. This procedure is shown to be very useful when the Lagrangian is homogeneous of degree one in the velocities giving rise to an identically vanishing Hamiltonian.

1.
P. A. M.
Dirac
,
Canad. J. Math.
2
,
129
(
1950
).
2.
P. A. M. Dirac, Lectures on Quantum Mechanics (Belfer Graduate School of Science, Yeshiva University, New York, 1964).
3.
A. Hanson, T. Regge, and C. Teitelboim, Constrained Hamiltonian Systems (Academia Nazionale dei Lincei, Rome, 1976).
4.
G. M.
Marmo
,
N.
Mukunda
, and
J.
Samuel
,
Riv. Nuovo Cimento
6
(
2
),
1
(
1983
).
5.
R. Hartshorne, Algebraic Geometry (Springer‐Verlag, New York, 1977).
6.
S.
Hojman
and
H.
Harleston
,
J. Math. Phys.
22
,
1414
(
1981
).
7.
R. Abraham and J. E. Marsden, Foundations of Mechanics (Benjamin, Reading, MA, 1978), 2nd ed.
8.
J. Hajdu, G. Gyorgyi, and Th. Kahan, Symétries et groupes en Mécanique Classique Prérelativiste, in Théorie des groupes en Physique Classique et Quantique, edited by Th. Kahan (Dunod, Paris, 1971), Vol. 2.
9.
N. Woodhouse, Geometric Quantization (Clarendon, Oxford, 1980).
10.
M.
Asorey
,
J. F.
Cariñena
, and
L. A.
Ibort
,
J. Math. Phys.
24
,
2745
(
1983
).
This content is only available via PDF.
You do not currently have access to this content.