The present paper deals with variational principles in terms of hemivariational inequalities and with multivalued differential equations which are called differential inclusions in analytical mechanics. Such inequalities and inclusions are received when no restrictions of differentiability are considered.

1.
H. Goldstein, Classical Mechanics, 2nd ed. (Addison‐Wesley, Reading, MA, 1980).
2.
G. Hamel, Theoretische Mechanik (Springer‐Verlag, New York, 1978).
3.
F. H.
Clarke
,
Trans. Am. Math. Soc.
205
,
247
262
(
1975
).
4.
R. T. Rockafellar, The Theory of Subgradients and its Applications to Problems of Optimization. Convex and Nonconvex Functions (Heldermann‐Verlag, Berlin, 1981).
5.
P. D.
Panagiotopoulos
,
Mech. Res. Comm.
8
,
335
340
(
1981
).
6.
P. Mittelstaedt, Klassische Mechanik (Bibliographisches Institut, Mannheim, Wien, Zürich, 1969).
7.
C. Lanczos, The Variational Principles of Mechanics (University of Toronto, Toronto, 1966).
8.
C.
Heinz
,
Acta Mech.
41
,
23
33
(
1981
).
9.
C. Heinz, “Vorlesungen über Analytische Mechanik,” lecture given at RWTH Aachen (to be published).
10.
C.
Heinz
,
Acta Mech.
10
,
110
129
(
1970
).
11.
F. H.
Clarke
,
SIAM J. Control Optim.
14
,
682
699
(
1976
).
12.
F. H.
Clarke
,
Can. J. Math.
32
,
494
509
(
1980
).
This content is only available via PDF.
You do not currently have access to this content.