We derive new series and integral representations for the Coulomb transition matrix in momentum space, 〈pTcp′〉, and for its partial‐wave projections, 〈pTclp′〉 (l=0,1,...), to be denoted by Tc and Tcl, respectively. We also consider hypergeometric‐function representations for Tc and Tcl and discuss their analytic continuation to the whole complex k plane (k2 is the energy). The new integrals are essentially ∫π0 cosh γt (ρ−cos t)1dt for Tc and ∫π0 cosh γt ×Ql(uu′+vv′ cos t)dt for Tcl, where γ is Sommerfeld’s parameter and ρ,u,u′,v, and v′ are variables depending on the energy and the momenta; related integrals follow from these. A well‐known and convenient series representation for Tc consists essentially of the sum ∑nyn(n22)1, where y depends on the energy and the momenta. We derive its analog for Tcl, the corresponding sum being ∑n(n22)1Qnl(u) Pnl(u′), 1<u′<u. This sum is a new member of the family of sums of products of Legendre functions that can be evaluated in a relatively simple closed form; other members of this family have been recently obtained by the author. With the new representations for Tc and Tcl we derive a set of twenty‐four optimal inequalities (containing two conjectured inequalities) for these Coulomb T matrices, presumably covering all cases relevant for physics. For the proof of these inequalities several different representations, and in particular the newly derived ones, would appear to be indispensable. Many of the inequalities are new. They are valid for fixed real Coulomb strength and fixed real energy≠0. Because of the complexity of exact closed forms for Tc and Tcl, approximations are needed for numerical calculations; the most natural one consists of replacing the Coulomb T matrix by the Coulomb potential. Our inequalities are useful for estimating the accuracy of this approximation.

1.
C. A. Coulomb, Mem. Acad. R. Sci. Inst. Fr. 1785 (Paris, 1788), 569‐577, and 578‐611, respectively.
2.
E.
Rutherford
,
Philos. Mag.
21
,
669
(
1911
).
[PubMed]
0031-8086
3.
W.
Pauli
,
Z. Phys.
36
,
336
(
1926
).
[PubMed]
0044-3328
4.
G.
Wentzel
,
Z. Phys.
40
,
590
(
1926
).
[PubMed]
0044-3328
5.
J.
Meixner
,
Math. Z.
36
,
677
(
1933
).
[PubMed]
0025-5874
6.
V.
Fock
,
Z. Phys.
98
,
145
(
1935
).
[PubMed]
0044-3328
7.
V.
Bargmann
,
Z. Phys.
99
,
576
(
1936
).
[PubMed]
0044-3328
8.
L.
Hostler
,
J. Math. Phys.
5
,
591
,
1235
(
1964
).
[PubMed]
0022-2488
9.
J.
Schwinger
,
J. Math. Phys.
5
,
1606
(
1964
).
[PubMed]
0022-2488
10.
M.
Bander
and
C.
Itzykson
,
Rev. Mod. Phys.
38
,
330
,
346
(
1966
).
[PubMed]
0034-6861
11.
A. M.
Perelomov
and
V. S.
Popov
,
Zh. Eksp. Teor. Fiz.
50
,
179
(
1966
)
[PubMed]
0044-4510
11.
[
Sov. Phys. JETP
23
,
118
(
1966
)].
[PubMed]
0038-5646
12.
L.
Hostler
,
J. Math. Phys.
8
,
642
(
1967
).
[PubMed]
0022-2488
13.
J.
Nuttall
and
R. W.
Stagat
,
Phys. Rev. A
3
,
1355
(
1971
).
[PubMed]
1050-2947
14.
E.
Prugovečki
and
J.
Zorbas
,
J. Math. Phys.
14
,
1398
(
1973
).
[PubMed]
0022-2488
15.
S. N.
Banerjee
,
Nuovo Cimento A
25
,
199
(
1974
).
16.
A. C.
Chen
,
Am. J. Phys.
47
,
1073
(
1979
).
[PubMed]
0002-9505
17.
J. C. Y. Chen and A. C. Chen, in Advances in Atomic and Molecular Physics, edited by D. R. Bates and I. Esterman (Academic, New York, 1972), Vol. 8, pp. 71–129.
18.
H. van Haeringen, “The Coulomb Potential in Quantum Mechanics and Related Topics,” Ph.D. thesis, Free University, Amsterdam, 1978, 272 p.
19.
C.
Chandler
,
Nucl. Phys. A
353
,
129c
(
1981
).
[PubMed]
0375-9474
20.
L. P.
Kok
,
Nucl. Phys. A
353
,
171c
(
1981
).
[PubMed]
0375-9474
21.
H.
van Haeringen
,
Nucl. Phys. A
327
,
77
(
1979
).
[PubMed]
0375-9474
22.
L. P.
Kok
and
H.
van Haeringen
,
Phys. Rev. C
21
,
512
(
1980
).
[PubMed]
0556-2813
23.
H.
van Haeringen
and
L. P.
Kok
,
Delft Prog. Rep.
7
,
3
(
1982
).
24.
H. van Haeringen and L. P. Kok, “New Inequalities for the Coulomb T matrix in momentum space,” J. Math. Phys. (to be published).
25.
L. P.
Kok
and
H.
van Haeringen
,
Phys. Rev. Lett.
46
,
1257
(
1981
).
[PubMed]
0031-9007
26.
H.
van Haeringen
,
Phys. Lett. A
82
,
359
(
1981
).
[PubMed]
0375-9601
27.
H.
van Haeringen
,
J. Math. Phys.
24, 1054, 1152, 1157, 1267, and 1274 (
1983
).
[PubMed]
0022-2488
28.
H.
van Haeringen
,
J. Math. Phys.
24
,
2467
(
1983
).
[PubMed]
0022-2488
29.
L. P.
Kok
,
J. W.
de Maag
,
H. H.
Brouwer
, and
H.
van Haeringen
,
Phys. Rev. C
26
,
2381
(
1982
).
[PubMed]
0556-2813
30.
J. W.
de Maag
,
L. P.
Kok
, and
H.
van Haeringen
,
J. Math. Phys.
25
,
684
(
1984
).
[PubMed]
0022-2488
31.
H.
van Haeringen
,
Delft Prog. Rep.
8
,
110
(
1983
);
31.
Report 82 10 (Delft, 1982).
32.
H. van Haeringen, “Coulomb T matrix: Representations, Inequalities, Limits, and Zeros,” Report 82 07 (Delft, 1982);
32.
2nd ed.: Report 83 07 (Delft, 1983).
33.
H. van Haeringen, “Interactions for charged and neutral particles: Theory and Formulas,” Report 82 12 (Delft, 1982);
33.
2nd ed. Report 83 12 (Delft, 1983).
34.
I. H.
Sloan
,
Phys. Rev. A
7
,
1016
(
1973
).
[PubMed]
1050-2947
35.
A. C.
Chen
and
J. C. Y.
Chen
,
J. Phys. B
4
, L
102
(
1971
).
[PubMed]
0022-3700
36.
J. C. Y.
Chen
and
T.
Ishihara
,
J. Phys. B
2
,
12
(
1969
).
[PubMed]
0022-3700
37.
J. C. Y.
Chen
and
T.
Ishihara
,
Phys. Rev.
186
,
25
(
1969
).
[PubMed]
0031-899X
38.
M.
Rotenberg
,
Ann. Phys. (N.Y.)
19
,
262
(
1962
).
[PubMed]
0003-4916
39.
S.
Weinberg
,
Phys. Rev.
131
,
440
(
1963
).
[PubMed]
0031-899X
40.
W. Magnus, F. Oberhettinger, and R. P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics (Springer, New York, 1966).
41.
A. Erdelyi, Higher Transcendental Functions (McGraw‐Hill, New York, 1953), Vols. I and II; Tables of Integral Transforms (McGraw‐Hill, New York, 1954), Vols. I and II.
42.
I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, corrected and enlarged edition (Academic, New York, 1980).
43.
E. R. Hansen, A Table of Series and Products (Prentice‐Hall, Englewood Cliffs, NJ, 1975).
44.
H.
van Haeringen
,
Delft Prog. Rep.
6
,
236
(
1981
);
44.
J. Math. Phys.
23
,
964
(
1982
);
[PubMed]
0022-2488
44.
H.
van Haeringen
,
24
,
1054
(
1983
).
[PubMed]
0022-2488,
J. Math. Phys.
45.
H. van Haeringen, “Inequalities for Tmatrices associated with Coulomb‐plus‐short‐range potentials,” in preparation.
This content is only available via PDF.
You do not currently have access to this content.