The Darboux transformation, a method used to transform a Schrödinger‐type equation to a Schrödinger equation with a new potential, is discussed. An exactly solvable double‐well potential model for the one‐dimensional Schrödinger equation is obtained.

1.
N. G.
van Kampen
,
J. Stat. Phys.
17
,
71
(
1977
).
2.
E. Merzbacher, Quantum Mechanics (Wiley, New York, 1970);
E. W.
Gettys
and
H. W.
Gruber
,
Am. J. Phys.
43
,
625
(
1975
);
M.
Prakash
,
J. Phys. A
9
,
1847
(
1976
);
J.
Thomchick
,
J. P.
McKelvey
, and
C. F.
Elliott
,
Phys. Lett. A
66
,
86
(
1978
).
3.
R. G.
Winter
,
Am. J. Phys.
45
,
569
(
1977
).
4.
M.
Razavy
,
Am. J. Phys.
48
,
285
(
1980
).
5.
For instance, S. Flügge and H. Marschall, Rechenmethoden der Quantentheorie (Springer, Berlin, 1952).
6.
J. G.
Darboux
,
C. R. Acad. Sci. Paris
94
,
1456
(
1882
);
E. L. Ince, Ordinary Differential Equations (Dover, New York, 1956), p. 132.
7.
M. Abramovitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965).
8.
M. O. Hongler, preprint.
9.
M. O. Hongler and N. D. Quach, preprint.
10.
D. ter Haar, Problems in Quantum Mechanics (Academic, New York, 1974), p. 144.
11.
M. O.
Hongler
and
W. M.
Zheng
,
J. Stat. Phys.
29
,
317
(
1982
).
This content is only available via PDF.
You do not currently have access to this content.