The purpose of this paper is to provide a basis of theory of measurements of continuous observables. We generalize von Neumann’s description of measuring processes of discrete quantum observables in terms of interaction between the measured system and the apparatus to continuous observables, and show how every such measuring process determines the state change caused by the measurement. We establish a one‐to‐one correspondence between completely positive instruments in the sense of Davies and Lewis and the state changes determined by the measuring processes. We also prove that there are no weakly repeatable completely positive instruments of nondiscrete observables in the standard formulation of quantum mechanics, so that there are no measuring processes of nondiscrete observables whose state changes satisfy the repeatability hypothesis. A proof of the Wigner–Araki–Yanase theorem on the nonexistence of repeatable measurements of observables not commuting conserved quantities is given in our framework. We also discuss the implication of these results for the recent results due to Srinivas and due to Mercer on measurements of continuous observables.

1.
E. B.
Davies
and
J. T.
Lewis
, “
An operational approach to quantum probability
,”
Commun. Math. Phys.
17
,
239
260
(
1970
).
2.
E. B.
Davies
, “
Quantum stochastic processes
,”
Commun. Math. Phys.
15
,
277
304
(
1970
).
3.
E. B.
Davies
, “
On the repeated measurement of continuous observables in quantum mechanics
,”
J. Funct. Anal.
6
,
318
346
(
1970
).
4.
E. B. Davies, Quantum Theory of Open Systems (Academic, London, 1976).
5.
A. S.
Holevo
, “
Statistical decision theory for quantum systems
,”
J. Multivar. Anal.
3
,
337
394
(
1973
).
6.
H.
Cycon
and
K.‐E.
Hellwig
, “
Conditional expectations in generalized probability theory
,”
J. Math. Phys.
18
,
1154
1161
(
1977
).
7.
M. D.
Srinivas
, “
Foundations of quantum probability theory
,”
J. Math. Phys.
16
,
1672
1685
(
1985
).
8.
M. D.
Srinivas
, “
Collapse postulate for observables with continuous spectra
,”
Commun. Math. Phys.
71
,
131
158
(
1980
).
9.
R.
Mercer
, “
General quantum measurements: Local transition maps
,”
Commun. Math. Phys.
84
,
239
250
(
1982
).
10.
J. von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton, U.P., Princeton, NJ, 1955).
11.
M.
Nakamura
and
H.
Umegaki
, “
On von Neumann’s theory of measurements in quantum statistics
,”
Math. Jpn.
7
,
151
157
(
1962
).
12.
H.
Umegaki
, “
Conditional expectation in an operator algebra, I—II
,”
Tohoku Math. J.
6
,
177
181
(
1954
).
H.
Umegaki
,
8
,
86
100
(
1956
);.,
Tohoku Math. J.
13.
W. B.
Areveson
, “
Analyticity in operator algebras
,”
Am. J. Phys.
89
,
578
642
(
1967
).
14.
K.
Kraus
, “
General state changes in quantum theory
,”
Ann. Phys.
64
,
311
335
(
1971
).
15.
E. P.
Wigner
, “
Die Messung Quantenmechanischer Operatoren
,”
Z. Phys.
133
,
101
108
(
1952
).
16.
H.
Araki
and
M. M.
Yanase
, “
Measurements of quantum mechanical operators
,”
Phys. Rev.
120
,
622
626
(
1960
).
17.
J.
Tomiyama
, “
On the projection of norm one in W*‐algebra
,”
Proc. Jpn. Acad.
33
,
608
612
(
1957
).
18.
W. F.
Stinespring
, “
Positive functions on C*‐algebras
,”
Proc. Am. Math. Soc.
6
,
211
216
(
1955
).
19.
M. Takesaki, Theory of Operator Algebras I (Springer‐Verlag, New York, 1979).
20.
G. W.
Mackey
, “
Borel structure in groups and their duals
,”
Trans. Am. Math. Soc.
85
,
134
165
(
1957
).
21.
G.
Lüders
, “
Über die Zustandsanderung durch den Messprozess
,”
Ann. Physik
8
,
322
328
(
1951
).
This content is only available via PDF.
You do not currently have access to this content.