The purpose of this paper is to provide a basis of theory of measurements of continuous observables. We generalize von Neumann’s description of measuring processes of discrete quantum observables in terms of interaction between the measured system and the apparatus to continuous observables, and show how every such measuring process determines the state change caused by the measurement. We establish a one‐to‐one correspondence between completely positive instruments in the sense of Davies and Lewis and the state changes determined by the measuring processes. We also prove that there are no weakly repeatable completely positive instruments of nondiscrete observables in the standard formulation of quantum mechanics, so that there are no measuring processes of nondiscrete observables whose state changes satisfy the repeatability hypothesis. A proof of the Wigner–Araki–Yanase theorem on the nonexistence of repeatable measurements of observables not commuting conserved quantities is given in our framework. We also discuss the implication of these results for the recent results due to Srinivas and due to Mercer on measurements of continuous observables.
Skip Nav Destination
Article navigation
January 1984
Research Article|
January 01 1984
Quantum measuring processes of continuous observables
Masanao Ozawa
Masanao Ozawa
Department of Information Sciences, Tokyo Institute of Technology, Oh‐Okayama, Meguro‐ku, Tokyo 152, Japan
Search for other works by this author on:
J. Math. Phys. 25, 79–87 (1984)
Article history
Received:
May 03 1983
Accepted:
June 23 1983
Citation
Masanao Ozawa; Quantum measuring processes of continuous observables. J. Math. Phys. 1 January 1984; 25 (1): 79–87. https://doi.org/10.1063/1.526000
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00