The time‐independent scattering theory associated with the non‐self‐adjoint matrix Hamiltonians H of arrangement channel quantum mechanics is presented in detail first using the 3‐particle case as an example. A key feature is the biorthogonality of a suitably constructed set of scattering eigenvectors and duals. Channel space Möller operators, S‐ and T‐matrices are defined and a variety of properties investigated including the way multichannel unitarity is embedded into the theory. Some remarks on the time‐dependent theory are also made. A detailed discussion of channel space density matrix scattering theory (of interest, e.g., in reactive kinetic theory) is presented using the Liouville representation. We describe some special cases including the exclusion of breakup and 2×2 choices of three particle H.

1.
S.
Weinberg
,
Phys. Rev. B
133
,
232
(
1964
).
2.
K. L. Kowalski, in Few Body Systems and Nuclear Forces, Lecture Notes in Physics, Vol. 87 (Springer, New York, 1978).
3.
D. J.
Kouri
,
H.
Krüger
, and
F. S.
Levin
,
Phys. Rev. D
15
,
1156
(
1977
). The ACQM approach resulted from the original work of Baer and Kouri, and later work by Kouri and Levin, and Tobocman (see Ref. 14).
4.
D. K.
Hoffman
,
D. J.
Kouri
, and
Z. H.
Top
,
J. Chem. Phys.
70
,
4640
(
1979
).
5.
J. W.
Evans
,
J. Math. Phys.
22
,
1672
(
1981
).
6.
J. W.
Evans
and
D. K.
Hoffman
,
J. Math. Phys.
22
,
2858
(
1981
).
7.
W. N.
Polyzou
and
E. F.
Redish
,
Ann. Phys.
119
,
1
(
1979
).
8.
W. N. Polyzou, Ph.D. Thesis, University of Maryland, 1979.
9.
M. Reed and B. Simon, Methods of Modern Mathematical Physics III: Scattering Theory (Academic, New York, 1979).
10.
W. O. Amrein, J. M. Jauch, and K. B. Sinha, Scattering Theory in Quantum Mechanics (Benjamin, Reading, 1977).
11.
W.
Glöckle
,
Nucl. Phys. A
141
,
620
(
1970
);
W.
Glöckle
,
158
,
257
(
1970
); ,
Nucl. Phys. A
W.
Tobocman
,
Phys. Rev. C
11
,
43
(
1975
).
12.
Page 3 of Ref. 9.
13.
J. M.
Jauch
and
J.‐P.
Marchland
,
Helv. Phys. Acta
39
,
325
(
1966
).
14.
M.
Baer
and
D. J.
Kouri
,
Phys. Rev. A
4
,
1924
(
1971
);
M.
Baer
and
D. J.
Kouri
,
J. Chem. Phys.
56
,
1958
(
1972
)
and
M.
Baer
and
D. J.
Kouri
,
J. Math. Phys.
14
,
1637
(
1973
);
D. J.
Kouri
and
F. S.
Levin
,
Bull. Am. Phys. Soc.
19
,
489
(
1974
);
D. J.
Kouri
and
F. S.
Levin
,
Phys. Rev. A
10
,
1616
(
1974
);
D. J.
Kouri
and
F. S.
Levin
,
Phys. Lett. B
50
,
421
(
1974
);
D. J.
Kouri
and
F. S.
Levin
,
Nucl. Phys. A
250
,
127
(
1975
),
D. J.
Kouri
and
F. S.
Levin
,
253
,
395
(
1975
); ,
Nucl. Phys. A
W.
Tobocman
,
Phys. Rev. C
9
,
2466
(
1974
).
15.
L. D. Faddeev, Mathematical Aspects of the Three Body Problem in the Quantum Scattering Theory (Davey, New York, 1965).
16.
I. Singer, Bases in Banach Spaces I (Springer, New York, 1970).
17.
Appendix C of Ref. 6.
18.
U. Fano, in Lectures on the Many‐Body Problem, edited by E. R. Cainiello (Academic, New York, 1964), Vol. 2, p. 217.
19.
U.
Fano
,
Phys. Rev.
131
,
259
(
1963
).
20.
B. C.
Eu
,
J. Chem. Phys.
63
,
298
(
1975
).
21.
J. M.
Jauch
,
B.
Misra
, and
A. G.
Gibson
,
Helv. Phys. Acta
41
,
513
(
1968
).
22.
R. F.
Snider
,
J. Chem. Phys.
32
,
1051
(
1960
).
23.
R. F.
Snider
and
B. C.
Sanctuary
,
J. Chem. Phys.
55
,
1555
(
1971
).
24.
J. T.
Lowry
and
R. F.
Snider
,
J. Chem. Phys.
61
,
2320
and
(
1974
).
25.
B. C.
Eu
,
J. Chem. Phys.
63
,
303
(
1975
).
26.
J. W. Evans, D. K. Hoffman, and D. J. Kouri, “The Reactive Quantum Boltzmann Equations from an Arrangement Channel Space Representation and BBGKY Hierarchy,” preprint, Ames Laboratory and Department of Chemistry, Iowa State University, 1982.
27.
N. M.
Hugenholtz
,
Physica
23
,
481
(
1957
).
28.
R. D.
Olmsted
,
J. C.
Rainwater
, and
R. F.
Snider
,
J. Chem. Phys.
64
,
5100
(
1976
).
29.
V. Vanzani, in Few Body Nuclear Physics (International Atomic Energy Commission, Vienna, 1978).
30.
J. W. Evans, “Spectral Theory of Arrangement Channel Q. M. Hamiltonians: Perturbation and Spurious Multiplier Techniques,” preprint, Ames Laboratory and Department of Chemistry, Iowa State University, 1982.
This content is only available via PDF.
You do not currently have access to this content.