Examples of classes of nonlinear representations of Lie groups are given. Nonlinear representations which are a perturbation of a unitary representation of the discrete series of SU(1,1) are then proved to be formally linearizable.
REFERENCES
1.
M.
Flato
, G.
Pinczon
, and J.
Simon
, “Nonlinear representations of Lie groups
,” Ann. Sci. Ec. Norm. Sup.
10
, 405
–418
(1977
).2.
M.
Flato
and J.
Simon
, “Nonlinear equations and covariance
,” Lett. Math. Phys.
2
, 155
–60
(1977
).3.
M.
Flato
and J.
Simon
, “Linearization of relativistic nonlinear wave equations
,” J. Math. Phys.
21
, 913
‐7
(1980
).4.
M.
Flato
and J.
Simon
, “On a linearization program of nonlinear field equations
,” Phys. Lett.
94
, 518
–22
(1980
).5.
G.
Pinczon
and J.
Simon
, “On the 1‐cohomology of Lie groups
,” Lett. Math. Phys.
1
, 83
–91
(1975
).6.
G.
Pinczon
and J.
Simon
, “Extension of representations and cohomology
,” Rep. Math. Phys.
16
, 49
–77
(1979
).7.
8.
V.
Guillemin
and S.
Sternberg
, “Remarks on a paper of Hermann
,” Trans. Am. Math. Soc.
130
, 110
‐6
(1968
).9.
A. Guichardet, Cohomologie des groupes topologiques et des algèbres de Lie (Fernand Nathan, Paris, 1980).
10.
M. A. Naimark, Linear Representations of the Lorentz Group (Macmillan, New York, 1964).
11.
G.
Pinczon
and J.
Simon
, “Nonlinear representations of inhomogeneous groups
,” Lett. Math. Phys.
2
, 499
–504
(1978
).12.
F. Treves, Topological Vector Spaces, Distributions and Kernels (Academic, New York, 1967).
This content is only available via PDF.
© 1983 American Institute of Physics.
1983
American Institute of Physics
You do not currently have access to this content.