Suppose f(r) is an attractive central potential of the form f(r)=∑ki=1g(i)(f(i)(r)), where {f(i)} is a set of basispotentials (powers, log, Hulthén, sech2) and {g(i)} is a set of smooth increasing transformations which, for a given f, are either all convex or all concave. Formulas are derived for bounds on the energy trajectories Enl =Fnl(v) of the Hamiltonian H=−Δ+vf(r), where v is a coupling constant. The transform Λ( f)=F is carried out in two steps: ff̄→F, where f̄(s) is called the kineticpotential of f and is defined by f̄(s)=inf(ψ,f,ψ) subject to ψ∈𝒟⊆L2(R3), where 𝒟 is the domain of H, ∥ψ∥=1, and (ψ,−Δψ)=s. A table is presented of the basis kinetic potentials { f̄(i)(s)}; the general trajectory bounds F*(v) are then shown to be given by a Legendre transformation of the form (s, f̄*(s))(v, F*(v)), where f̄*(s) =∑ki=1g(i)× (f̄(i)(s)) and F*(v) =mins>0{s+vf̄*(s)}. With the aid of this potential construction set (a kind of Schrödinger Lego), ground‐state trajectory bounds are derived for a variety of translation‐invariant N‐boson and N‐fermion problems together with some excited‐state trajectory bounds in the special case N=2. This article combines into a single simplified and more general theory the earlier ‘‘potential envelope method’’ and the ‘‘method for linear combinations of elementary potentials.’’

1.
E. Prugovečki, Quantum Mechanics in Hilbert Space (Academic, New York, 1981).
2.
M. Reed and B. Simon, Methods of Modern Mathematical Physics IV. Analysis of Operators (Academic, New York, 1978).
3.
W. Thirring, A Course in Mathematical Physics 3: Quantum Mechanics of Atoms and Molecules (Springer‐Verlag, New York, 1981).
4.
R. L.
Hall
,
Phys. Rev. D
22
,
2062
(
1980
);
Paper I.
5.
R. L.
Hall
and
M.
Satpathy
,
J. Phys. A: Math. Gen.
14
,
2645
(
1981
);
Paper II.
6.
R. L.
Hall
,
Phys. Rev. D
23
,
1421
(
1981
);
Paper III.
7.
R. L.
Hall
,
Proc. Phys. Soc.
91
,
16
(
1967
).
8.
R. L.
Hall
,
Phys. Lett. B
30
,
320
(
1969
).
9.
R. L.
Hall
,
Phys. Rev. C
20
,
1155
(
1979
).
10.
W. Feller, An Introduction to Probability Theory and its Applications (Wiley, New York, 1971), Vol. II.
11.
I. M. Gel’fand and S. V. Fomin, Calculus of Variations (Prentice‐Hall, Englewood Cliffs, N.J., 1963).
12.
R. L.
Hall
,
Aequ. Math.
8
,
281
(
1972
);
R. L.
Hall
,
Can. J. Phys.
50
,
305
(
1972
).
13.
S. Flügge, Practical Quantum Mechanics (Springer‐Verlag, New York, 1974).
14.
V.
Efimov
,
Phys. Lett. B
33
,
563
(
1970
);
R. D.
Amado
and
J. V.
Noble
,
Phys. Rev. D
8
,
1992
(
1972
);
R. L.
Hall
,
Z. Phys. A
291
,
255
(
1979
).
15.
H. R.
Post
,
Proc. Phys. Soc. A
66
,
649
(
1954
);
H. R.
Post
,
A69
,
936
(
1956
);
H. R.
Post
,
A79
,
819
(
1962
).
16.
R. L.
Hall
and
B.
Schwesinger
,
J. Math. Phys.
20
,
2481
(
1979
).
17.
F. T.
Hioe
and
E. W.
Montroll
,
J. Math. Phys.
16
,
1945
(
1975
);
F. T.
Hioe
,
D.
MacMillen
, and
E. W.
Montroll
,
J. Math. Phys.
17
,
1320
(
1976
);
H.
Turschner
,
J. Phys. A: Math. Gen.
12
,
451
(
1979
);
J.
Killingbeck
,
J. Phys. A: Math. Gen.
13
,
49
(
1980
);
B. J. B.
Crowley
and
T. F.
Hill
,
J. Phys. A: Math. Gen.
12
,
L223
(
1979
);
L. K.
Sharma
,
J.
Choubey
, and
H. J. W.
Müller‐Kirsten
,
J. Math. Phys.
21
,
1533
(
1980
);
M. S.
Ashbaugh
and
J. D.
Morgan
III
,
J. Phys. A: Math. Gen.
14
,
809
(
1981
);
R. E.
Crandall
and
M.
Hall Reno
,
J. Math. Phys.
23
,
64
(
1982
).
18.
R. L.
Hall
and
C.
Kalman
,
Phys. Lett. B
83
,
80
(
1979
).
19.
C.
Quigg
and
J. L.
Rosner
,
Phys. Lett. B
71
,
153
(
1977
).
20.
Handbook of Mathematical Functions, edited by M. Abramowitz and I. Stegun (Dover, New York, 1970).
21.
C. S.
Lam
and
Y. P.
Varshni
,
Phys. Rev. A
4
,
1875
(
1971
);
F. J.
Rogers
,
H. C.
Graboske
,Jr.
, and
D. J.
Harwood
,
Phys. Rev. A
1
,
1577
(
1970
);
N.
Bessis
,
G.
Bessis
,
G.
Corbel
, and
B.
Dakhel
,
J. Chem. Phys.
63
,
3744
(
1975
).
22.
C. S.
Lai
and
W. C.
Lin
,
Phys. Lett. A
78
,
335
(
1980
).
23.
L. W.
Bruch
and
I. J.
McGee
,
J. Chem. Phys.
59
,
409
(
1973
);
T.
Brady
,
E.
Harms
,
L.
Laroze
, and
J. S.
Levinger
,
Nucl. Phys. A
168
,
509
(
1971
);
T. K.
Lim
and
A.
Zuniga
,
J. Chem. Phys.
63
,
2245
(
1975
);
R. N.
Hill
,
J. Math. Phys.
21
,
1070
(
1980
).
24.
R. L.
Hall
,
J. Phys. A: Math. Nucl. Gen.
1
,
468
(
1968
);
F.
Cabal
and
L. W.
Bruch
,
J. Chem. Phys.
70
,
4669
(
1979
);
L. W.
Bruch
,
J. Chem. Phys.
72
,
5511
(
1980
).
25.
D. J. Thouless, The Quantum Mechanics of Many‐Body Systems (Academic, New York, 1972);
A. L. Fetter and J. D. Walecka, Quantum Theory of Many‐Particle Systems (McGraw‐Hill, New York, 1971).
This content is only available via PDF.
You do not currently have access to this content.