A rational von Neumann lattice is defined as a lattice in phase space with the constants a and b in the x and p directions given by a ratio of integers. Zeros of harmonic oscillator functions in the kq representation on such lattices are found. It is shown that the number of zeros of the kq function determines the number of states by which a set on a von Neumann lattice is overcomplete. Interesting relations between theta functions are derived on the basis of their connection with the harmonic oscillator states in the kq representation.

1.
J. von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton U.P., Princeton, 1955).
2.
E.
Schrödinger
,
Naturwissenschaften
14
,
664
(
1926
).
3.
R. J.
Glauber
,
Phys. Rev.
131
,
2766
(
1963
).
4.
A. M.
Perelomov
,
Teor. Mat. Fiz.
6
,
213
(
1971
)
[
A. M.
Perelomov
,
Theor. Math. Phys.
6
,
156
(
1971
)].
5.
V.
Bargmann
,
P.
Butera
,
L.
Girardello
, and
J. R.
Klauder
,
Rep. Math. Phys.
2
,
221
(
1971
).
6.
H.
Bacry
,
A.
Grossmann
, and
J.
Zak
,
Phys. Rev. B
12
,
1118
(
1975
).
7.
M.
Boon
and
J.
Zak
,
Phys. Rev. B
18
,
6744
(
1978
).
8.
R. Balian, “A strong uncertainty principle in signal theory or in quantum mechanics” (Preprint).
9.
M.
Boon
and
J.
Zak
,
J. Math. Phys.
22
,
1090
(
1981
).
An independent proof was given by
A.
Janssen
,
J. Math. Phys.
23
,
720
(
1982
).
10.
J. Zak, in Solid State Physics, edited by H. Ehrenreich, F. Seitz, and D. Turnbull (Academic, New York, 1972), Vol. 27.
11.
Pierre
Carrier
,
Am. Math. Soc. Symp. Pure Math.
9
,
361
(
1966
).
12.
J. L. Powell and B. Crasemann, Quantum Mechanics (Addison‐Wesley, Reading, MA, 1965).
13.
E. T. Whittaker and G. N. Watson, A Course of Modem Analysis (Cambridge U.P., Cambridge, England, 1950).
14.
Conditions for completeness in case f is a distribution have been investigated by
A.
Janssen
,
J. Math. Anal. Appl.
80
,
156
(
1981
) and Ref. 9 above.
15.
A. C. Aitken, Determinants and Matrices (Oliver and Boyd, Edinburgh, 1951), Chap. VI.
16.
J. Tannery and J. Molk, Elements de la Théorie des Fonctions Elliptiques, 2nd. Ed. (Chelsea, New York, 1972), Vol. 2, Sec. 258.
17.
B. C.
Berndt
,
J. Reine Angew. Math.
303/304
,
147
164
(
1978
).
18.
A. Cauchy, Oeuvres, Serie II, Vol. VII (Paris, 1889).
19.
B. C. Berndt, Theory and Applications of Special Functions (Academic, New York, 1975), pp. 143–189.
20.
M. H.
Boon
,
Helv. Phys. Acta
48
,
551
(
1975
);
Lecture Notes in Physics (Springer, Berlin, 1976), Vol. 50, p. 282.
21.
E.
Brown
,
Phys. Rev.
133
,
A1038
(
1964
).
22.
J.
Zak
,
Phys. Rev.
134
,
A1602
,
A1607
(
1964
).
This content is only available via PDF.
You do not currently have access to this content.