The Riemann geometry of a space with conformal symmetries is written in terms of intrinsic objects defined from the action of the symmetries. Its application in the study of generalized Kaluza–Klein theories is discussed.
REFERENCES
1.
T. Kaluza, Sitzungsberichte der Preussischen Akademie der Wissenschaften, 966 (1921).
2.
P. G. Bergmann, Introduction to the Theory of Relativity (Prentice‐Hall, New York, 1942);
A. Lichnerowicz, Theories relativistes de la gravitation et de l’ electromagnetisme (Masson, Paris, 1955);
W. Thirring, in 11th Schladming Conference, edited by P. Urban (Springer‐Verlag, New York, 1972);
3.
B. DeWitt, Dynamical Theory of Groups and Fields (Gordon and Breach, New York, 1965);
4.
5.
For a review of supergravity, see
P.
van Nieuwenhuizen
, Phys. Rep.
68
(4
), 191
(1981
), where an extensive list of references are provided.6.
S. Kobayashi and K. Nomizu, Foundations of Differential Geometry (Interscience, New York, 1963), Vol. I.
7.
R. Penrose, in Battelle Rencontres (Benjamin, New York, 1968).
8.
See, for example, C. Chevalley, Theory of Lie Groups (Princeton U.P., Princeton, New Jersey, 1946).
9.
See, for example, Serge Lang, Introduction to Differentiable Manifolds (Interscience, New York, 1962).
10.
See, for example, Y. M. Cho (1975) in Ref. 3.
11.
This content is only available via PDF.
© 1983 American Institute of Physics.
1983
American Institute of Physics
You do not currently have access to this content.