Envelope soliton solutions of a class of generalized nonlinear Schrödinger equations are investigated. If the quasiparticle number N is conserved, the evolution of solitons in the presence of perturbations can be discussed in terms of the functional behavior of N(η2), where η2 is the nonlinear frequency shift. For ∂η2N >0, the system is stable in the sense of Liapunov, whereas, in the opposite region, instability occurs. The theorem is applied to various types of envelope solitons such as spikons, relatons, and others.
REFERENCES
1.
2.
3.
4.
R.
Friedberg
, T. D.
Lee
, and A.
Sirlin
, Phys. Rev. D
13
, 2739
(1976
).5.
6.
7.
8.
9.
10.
P. K.
Shukla
, M. Y.
Yu
, and K. H.
Spatschek
, Phys. Lett. A
62
, 332
(1977
).11.
12.
M. Y.
Yu
, P. K.
Shukla
, and K. H.
Spatschek
, Phys. Rev. A
18
, 1591
(1978
).13.
Yu. V.
Katyshev
, N. V.
Makhalkdiani
, and V. G.
Makhankov
, Phys. Lett. A
66
, 456
(1978
).14.
L.
Stenflo
and N. L.
Tsintsadze
, Astrophys. Space Sci.
64
, 513
(1979
).15.
16.
17.
18.
M. Y.
Yu
, P. K.
Shukla
, and N. L.
Tsintsadze
, Phys. Fluids
25
, 1049
(1982
).19.
K. V. Kotetishvili, P. K. Kaw, and N. L. Tsintsadze, Sov. J. Plasma Phys. (1982) (to be published).
20.
E. W. Laedke and K. H. Spatschek, in Topology—Calculus of Variations and Their Applications (Marcel Dekker, New York, 1983).
21.
22.
23.
V. I. Zubov, Methods of A. M. Liapunov and Their Application (Noordhoff, Groningen, 1964).
24.
R. A. Adams, Sobolev Spaces (Academic, New York, 1975).
25.
N. L. Tsintsadze, (1982) (to be published).
This content is only available via PDF.
© 1983 American Institute of Physics.
1983
American Institute of Physics
You do not currently have access to this content.