Convergence of the T‐matrix scheme is proved under more general assumptions than in Ramm [J. Math. Phys. 23, 1123–5 (1982)] and for more general boundary conditions. Stability of the numerical scheme towards small perturbations of data and convergence of the expansion coefficients are established. Dependence of the rate of convergence on the choice of basis functions is discussed. Dependence of the quality of expansions in various spherical waves on the shape of the obstacle is discussed.
REFERENCES
1.
V. I. Smirnov, A Courseof Higher Mathematics (Pergamon, Oxford, 1964), Vol. IV.
2.
I. Kral, Integral Operators in Potential Theory (Springer, New York, 1980).
3.
T. Meis and U. Marcowitz, Numerical Solution of Partial Differential Equations, Applied Mathematical Sciences, Vol. 32 (Springer, New York, 1981).
4.
C. T. H. Baker, The Numerical Treatment of Integral Equations (Oxford U.P., Oxford, 1977).
5.
V. K. Varadan and V. V. Varadan, Eds., Acoustic, Electromagnetic and Elastic Wave Scattering—Focus of the T‐matrix Approach (Pergamon, New York, 1980).
6.
P. C.
Waterman
, “New formulation of acoustic scattering
,” J. Acoust. Soc. Am.
45
, 1417
‐29
(1969
).7.
P. C.
Waterman
, “Symmetry, unitarity, and geometry in electromagnetic scattering
,” Phys. Rev. D
3
, 825
‐39
(1971
).8.
P. C.
Waterman
, “Matrix theory of elastic wave scattering
,” J. Acoust. Soc. Am.
60
, 567
‐80
(1976
).9.
V.
Varatharajulu
and Y.‐H.
Pao
, “Scattering matrix for elastic waves I. Theory
,” J. Acoust. Soc. Am.
60
, 556
‐66
(1976
).10.
P. C.
Waterman
, “Scattering by periodic surfaces
,” J. Acoust. Soc. Am.
57
, 791
‐802
(1975
).11.
A. G.
Ramm
, “Convergence of the T‐matrix approach to scattering theory
,” J. Math. Phys.
23
, 1123
‐5
(1982
);A. G.
Ramm
, “Convergence of the T‐matrix approach in the potential scattering
,” J. Math. Phys.
23
, 2408
‐10
(1982
)., J. Math. Phys.
12.
P. A.
Martin
, “Acoustic scattering and radiation problems, and the nullfield method
,” Wave Motion
4
, 391
–408
(1982
).13.
Ju. M. Berezanskii, Expansions in Eigenfunctions of Self‐Adjoint Operators, Translations of Mathematical Monographs, Vol. 17 (Am. Math. Soc. Providence, RI, 1968).
14.
M. A. Krasnoselskii et al., Approximate Solutions of Operator Equations (Wolters‐Nordhoff, Groningen, 1972).
15.
A. G. Ramm, Theory and Applications of Some New Classes of Integral Equations (Springer, New York, 1980).
16.
S. Kaczmarz and H. Steinhaus, Theorie der Orthogonalreihen (Chelsea, New York, 1951).
17.
I. Gohberg and M. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators, Translations of Mathematical Monographs, Vol. 18 (Am. Math. Soc. Providence, RI, 1969).
18.
I. Gohberg and I. Feldman, Convolution Equations and Projection Methods for Their Solutions, Translations and Mathetical Monographs, Vol. 41 (Am. Math. Soc., Providence, RI, 1974).
19.
R. Young, An Introduction to Nonharmonic Fourier Series (Academic, New York, 1980).
20.
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (National Bureau of Standards, Washington, DC, 1970).
21.
A. G.
Ramm
, N19
, 67
–76
(1963
);A. G.
Ramm
, N13
, 153
‐6
(1964
);A. G.
Ramm
, N1
, 170
(1966
);A. G.
Ramm
, 7
, 565
‐9
(1971
);A. G.
Ramm
, 6
, 1096
‐1106
(1970
).22.
S. G. Mikhlin, Numerical Performance of Variational Methods (Wolters‐Noordhoff, Groningen, 1971).
23.
C.
Goldstein
, “The finite element method with nonuniform mesh sizes for unbounded domains
,” Math. Comp.
36
, 387
–404
(1981
).
This content is only available via PDF.
© 1983 American Institute of Physics.
1983
American Institute of Physics
You do not currently have access to this content.