The isomorphic map of Clifford and Lie bundles to arbitrary coordinate atlases using a global orthonormal tetrad field on a parallelizable space‐time is used to construct a fully covariant Dirac spinor theory. The Klein–Gordon equation exhibits a natural spin‐torsion coupling of the Einstein–Cartan form, the torsion coming from the tetrad field. The tetrad connection coefficients are explicitly derived in addition to their relationship to the usual Levi–Cività coefficients. Various topological conditions for vanishing torsion are given. The Dirac and adjoint Dirac equations are obtained from a simple Lagrangian and the structure of the adjoint equation is discussed.

1.
S. W.
Hawking
and
R.
Penrose
,
Proc. R. Soc. London Ser. A:
314
,
529
(
1970
).
2.
R.
Geroch
,
J. Math. Phys.
11
,
343
(
1970
);
R.
Geroch
,
11
,
437
(
1970
). ,
J. Math. Phys.
See also J. Milnor, in Differential and Combinatorial Topology edited by S. Cairns (Princeton U.P., Princeton, NJ, 1965), p. 55.
3.
S. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972), Chap. 12.
4.
S. Chandrasekhar, General Relativity, An Einstein Centenary Survey, edited by S. W. Hawking and W. Israel (Cambridge U.P., Cambridge, 1979), Chap. 7.
5.
S.
Deser
and
C. J.
Isham
,
Phys. Rev. D
14
,
2505
(
1976
).
6.
S. Deser, “Exclusion of Static Solutions in Gravity‐Matter Coupling” in Field Theory, Quantization and Statistical Physics, edited by E. Tirapegui (D. Reidel, Boston, 1981), p. 77.
7.
S. B.
Edgar
,
Gen. Relativ. Gravit.
12
,
347
(
1980
).
8.
See
H.
Weyl
,
Phys. Rev.
77
,
699
(
1950
)
and
H.
Weyl
,
Z. Phys.
56
,
330
(
1929
).
Also
E.
Schrödinger
,
Sitzungsber. Akad. Phys.
57
,
261
(
1929
)
and C. Mo/ller, in Proceedings of the International School of Physics “Enrico Fermi,” Evidence for Gravitational Theories edited by C. Mo/ller (Academic, London, 1962), p. 252.
9.
F. W.
Heyl
,
P.
von der Heyde
, and
G. D.
Kerlick
,
Rev. Mod. Phys.
48
,
393
(
1976
).
10.
M.
Rosembaum
et al.,
Phys. Rev. D
26
,
761
(
1982
).
11.
P. C.
Aichelburg
and
T.
Dereli
,
Phys. Rev. D
18
,
1754
(
1978
).
12.
B.
DeFacio
and
D. G.
Retzloff
,
J. Math. Phys.
21
,
751
(
1980
).
13.
J. R.
Urani
and
M. H.
Kemp
,
J. Math. Phys.
23
,
227
(
1982
);
J. R.
Urani
and
M. H.
Kemp
,
23
,
423
(
1982
); ,
J. Math. Phys.
and J. Math. Phys. (to appear).
14.
C. T. J. Dodson, Catagories, Bundles and Space‐time Topology (Shiva, Orpington, 1980).
15.
R.
Ablamowicz
,
Z.
Oziewicz
, and
R.
Rzewuski
,
J. Math. Phys.
23
,
231
(
1982
).
16.
N.
Salingaros
,
J. Math. Phys.
23
,
1
(
1982
).
17.
S. Schweber, Relativistic Quantum Field Theory (Harper and Row, New York, 1961), p. 79.
18.
S. J. Avis and C. J. Isham, in Recent Developments in Gravitation, Cargese, 1978 edited by M. Levy and S. Deser (Plenum, New York, 1979).
19.
D. Bleeker, Gauge Theory and Variational Principles (Addison‐Wesley, Reading, 1981), p. 29.
20.
K. Nomizu, Lie Groups and Differential Geometry (Mathematical Society of Japan, 1956).
21.
J. Beem and P. Ehrlich, Global Lorentzian Geometry (Marcel Dekker, New York, 1981).
22.
P. Van Nieuwenhuizen, Recent Developments in Gravitation, Cargese, 1978, edited by M. Levy and S. Deser (Plenum, New York, 1979), p. 523.
23.
R.
Geroch
,
J. Math. Phys.
9
,
1739
(
1968
). Also, Ref. 2.
24.
N. Steenrod, Topology of Fiber Bundles (Princeton U.P., Princeton, NJ, 1955), p. 203.
This content is only available via PDF.
You do not currently have access to this content.