It is shown that, for systems with an arbitrary number of degrees of freedom, a necessary and sufficient condition for the Wigner function to be nonnegative is that the corresponding state wavefunction is the exponential of a quadratic form. This result generalizes the one obtained by Hudson [Rep. Math. Phys. 6, 249 (1974)] for one‐dimensional systems.

1.
E.
Wigner
,
Phys. Rev.
40
,
749
759
(
1932
).
2.
J. E.
Moyal
,
Proc. Cambridge Philos. Soc.
45
,
99
124
(
1949
).
3.
S. De Groot, La transformation de Weyl et la fonction de Wigner: une forme alternative de la mécanique quantique (Les Presses de l’Université de Montréal, 1974).
4.
R. L.
Hudson
,
Rep. Math. Phys.
6
,
249
252
(
1974
).
5.
C.
Piquet
,
C. R. Acad. Sci. Paris A
279
,
107
109
(
1974
).
6.
R. J.
Glauber
,
Phys. Rev.
131
,
2766
2788
(
1963
).
7.
J. C. T.
Pool
,
J. Math. Phys.
7
,
66
76
(
1966
).
8.
B. A. Fuks, Introduction to the Theory of Analytic Functions of Several Complex Variables (American Mathematical Society, Providence, R. I., 1963).
9.
R. P. Boas, Entire Functions (Academic, New York, 1954).
10.
H. Cartan, Théories Elémentaire des Fonctions Analytiques d’une ou plusieurs variables complexes (Hermann, Paris, 1963). English translation: Elementary Theory of Analytic Functions of one or several Variables (Addison Wesley, Reading, Mass.), See Sec. IV 2.3.
11.
C. Piquet (private communication).
12.
W. Feller, Introduction to probability theory and its applications (Wiley, New York, 1966), Chap. XV, Sec. 8, pp. 498–499.
This content is only available via PDF.
You do not currently have access to this content.