Using a recently developed global isometry method for treating accelerating observers, the induced tangent space transformation on flat Lorentzian R4 is mapped homomorphically onto a time‐dependent D(1/2,0)D(0,1/2) representation of SL (2,C). The Dirac equation is shown to take on pseudoterms via this mapping. Eliminating the pseudoterms by identifying an affine connection, an exact analytic expression for the covariant derivative is found for general cases of arbitrary C2 timelike observers. The transformation properties of the connection are shown to satisfy the conditions imposed by a general tetrad formalism. The specific case of the rotating observer is considered wherein the exact expression for the boosted Dirac equation is found.

1.
B.
DeFacio
,
P. W.
Dennis
, and
D. G.
Retzloff
,
Phys. Rev. D
18
,
2813
(
1978
).
2.
B.
DeFacio
,
P. W.
Dennis
, and
D. G.
Retzloff
,
Phys. Rev. D
20
,
570
(
1979
).
3.
B.
DeFacio
and
D. G.
Retzloff
,
J. Math. Phys.
21
,
751
(
1980
).
4.
Y.
Avishai
and
H.
Ekstein
,
Commun. Math. Phys.
37
,
193
(
1974
).
5.
D. G.
Retzloff
,
B.
DeFacio
, and
P. W.
Dennis
,
J. Math. Phys.
23
,
96
(
1982
).
6.
D. G.
Retzloff
,
B.
DeFacio
, and
P. W.
Dennis
,
J. Math. Phys.
23
,
105
(
1982
).
7.
J. R. Urani and G. D. Gale, Synthese (in press).
8.
J. R.
Urani
and
M. H.
Kemp
,
J. Math. Phys.
23
,
227
(
1982
).
9.
S. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972), p. 369.
10.
F. Halpern, Special Relativity and Quantum Mechanics (Prentice‐Hall, Englewood Cliffs, N. J., 1968), p. 11.
11.
F. Rohrlich, Classical Charged Particles (Addison‐Wesley, Reading, Mass., 1965), p. 288.
12.
S. Schweber, Relativistic Quantum Field Theory (Harper and Row, New York, 1961), p. 79.
This content is only available via PDF.
You do not currently have access to this content.