An explicit formula is presented for a (conditional) Wiener integral, the integrand of which is an exponential of a general quadratic functional of the path. The functional integrals arising in non‐Markovian Gaussian approximations to various problems of statistical physics (e.g., theory of the large polaron, theory of disordered systems) are easily recovered as special cases.

1.
R. P. Feynman and A. Hibbs, Quantum Mechanics and Path Integrals (McGraw‐Hill, New York, 1965).
2.
I. M.
Gel’fand
and
A. M.
Yaglom
,
Usp. Mat. Nauk.
11
,
77
(
1956
)
I. M.
Gel’fand
and
A. M.
Yaglom
, [
J. Math. Phys.
1
,
48
(
1960
)].
3.
L.
Streit
,
Acta Phys. Austriaca Suppl.
2
,
2
(
1966
).
4.
B. Simon, Functional Integration and Quantum Physics (Academic, New York, 1979).
5.
V. M.
Chetverikov
,
Teor. Mat. Fiz.
24
,
211
(
1975
)
V. M.
Chetverikov
, [
Theor. Math. Phys.
24
,
780
(
1975
)].
6.
R. P.
Feynman
,
Phys. Rev.
97
,
660
(
1955
).
7.
M. A.
Krivoglaz
and
S. I.
Pekar
,
Izv. Akad. Nauk. SSSR, Ser. Fiz.
21
,
16
(
1957
)
M. A.
Krivoglaz
and
S. I.
Pekar
, [
Bull. Acad. Sci. USSR, Phys. Ser.
21
,
13
(
1957
)];
Y.
Ôsaka
,
Prog. Theor. Phys.
22
,
437
(
1959
).
8.
R. W.
Hellwarth
and
P. M.
Platzman
,
Phys. Rev.
128
,
1599
(
1962
);
K. K.
Thornber
,
Phys. Rev. B
3
,
1929
(
1971
).
9.
V.
Sayakanit
,
Phys. Rev. B
19
,
2377
(
1979
).
10.
J. Adamowski, B. Gerlach, and H. Leschke, in Functional Integration, Theory and Aplications, edited by J.‐P. Antoine and E. Tirapegui (Plenum, New York, 1980), pp. 291–301;
M.
Saitoh
,
J. Phys. Soc. Jpn.
49
,
878
(
1980
).
11.
V.
Samathiyakanit
,
J. Phys. C
7
,
2849
(
1974
).
12.
E. P.
Gross
,
J. Stat. Phys.
17
,
265
(
1977
);
V.
Sayakanit
,
Phys. Rev. B
19
,
2266
(
1979
).
13.
P.‐L.
Chow
,
J. Math. Phys.
13
,
1224
(
1972
);
R.
Dashen
,
J. Math. Phys.
20
,
894
(
1979
).
14.
J. T.
Marshall
and
J. L.
Pell
,
J. Math. Phys.
20
,
1297
(
1979
).
15.
R. P.
Feynman
,
Phys. Rev.
84
,
108
(
1951
), Appendix C.
16.
For these definitions see, e.g., Refs. 2–4.
17.
C.
DeWitt‐Morette
,
A.
Maheshwari
, and
B.
Nelson
,
Phys. Reports
50
,
255
(
1979
).
18.
See, e.g., Theorem 3.11 in Ref. 4 and also
B.
Simon
,
Adv. Math.
24
,
244
(
1977
).
19.
G. J.
Papadopoulos
,
J. Phys. A
7
,
183
(
1974
);
A.
Maheshwari
,
J. Phys. A
8
,
1019
(
1975
).,
J. Phys. A
This content is only available via PDF.
You do not currently have access to this content.