A non‐Hermitian matrix Hamiltonian H appears in the wavefunction form of a variety of many‐body scattering theories. This operator acts on an arrangement channel Banach or Hilbert space 𝒞 = ⊕αℋ where ℋ is the N‐particle Hilbert space and α are certain arrangement channels. Various aspects of the spectral and semigroup theory for H are considered. The normalizable and weak (wavelike) eigenvectors of H are naturally characterized as either physical or spurious. Typically H is scalar spectral and ’’equivalent’’ to H on an H‐invariant subspace of physical solutions. If the eigenvectors form a basis, by constructing a suitable biorthogonal system, we show that H is scalar spectral on 𝒞. Other concepts including the channel space observables, trace class and trace, density matrix and Möller operators are developed. The sense in which the theory provides a ’’representation’’ of N‐particle quantum mechanics and its equivalence to the usual Hilbert space theory is clarified.

1.
S.
Weinberg
,
Phys. Rev.
133
,
B232
(
1964
).
2.
E. F. Redish, Lectures on the Quantum Three Body Problem (University of Maryland, College Park, Md., 1978).
3.
V. Vanzani, in Few Body Nuclear Physics (International Atomic Energy Commission, Vienna, 1978);
G.
Cattapan
and
V.
Vanzani
,
Lett. Nuovo Cimento
24
,
391
(
1979
);
L.
Lovitch
and
V.
Vanzani
,
Lett. Nuovo Cimento
26
,
65
(
1979
).
4.
G.
Bencze
,
Nucl. Phys. A
210
,
568
(
1973
);
E. F.
Redish
,
Nucl. Phys. A
235
,
16
(
1974
);
I. H.
Sloan
,
Phys. Rev. C
6
,
1945
(
1972
).
5.
D. J.
Kouri
and
F. S.
Levin
,
Bull. Am. Phys. Soc.
19
,
489
(
1974
);
D. J.
Kouri
and
F. S.
Levin
,
Phys. Rev. A
10
,
1616
(
1974
);
D. J.
Kouri
and
F. S.
Levin
,
Phys. Lett. B
50
,
421
(
1974
);
D. J.
Kouri
and
F. S.
Levin
,
Nucl. Phys. A
250
,
127
(
1975
);
D. J.
Kouri
and
F. S.
Levin
,
253
,
395
(
1975
); ,
Nucl. Phys. A
M.
Baer
and
D. J.
Kouri
,
J. Math. Phys.
14
,
1637
(
1973
);
W.
Tobocman
,
Phys. Rev. C
9
,
2406
(
1974
).
6.
O. A.
Yakubovskii
,
Sov. J. Nucl. Phys.
5
,
937
(
1967
).
7.
W.
Sandhas
,
Acta Phys. Austr. Suppl.
13
,
679
(
1974
);
W.
Sandhas
,
Czech. J. Phys. B
25
,
251
(
1975
);
P.
Grassberger
and
W.
Sandhas
,
Nucl. Phys. B
2
,
181
(
1967
);
E. O. Alt, P. Grassberger, and W. Sandhas, JINR Report E4‐6688 (1972).
8.
V.
Vanzani
,
Lett. Nuovo Cimento
16
,
1
(
1976
).
9.
W. N.
Polyzou
and
E.
Redish
,
Ann. Phys.
119
,
1
(
1979
);
W. N. Polyzou, Ph.D. thesis, University of Maryland (1979).
10.
K. Yosida, Functional Analysis 4th ed. (Springer, New York, 1974).
11.
L. D. Faddeev, Mathematical Aspects of the Three Body Problems in Quantum Scattering Theory (Davey, New York, 1965).
12.
M. Reed and B. Simon, Methods of Modern Mathematical Physics IV: Analysis of Operators (Academic, New York, 1978).
13.
V. Vanzani, in Few Body Systems and Nuclear Forces I, Lecture Notes in Physics, Vol. 82 (Springer, New York, 1978);
Lett. Nuovo Cimento
23
,
586
(
1978
).
14.
C.
Chandler
and
A. G.
Gibson
,
J. Math. Phys.
14
,
1328
(
1973
);
C.
Chandler
and
A. G.
Gibson
,
18
,
2336
(
1977
); ,
J. Math. Phys.
C.
Chandler
and
A. G.
Gibson
,
19
,
1610
(
1978
).,
J. Math. Phys.
15.
C. Chandler and A. G. Gibson, “A Two‐Hilbert‐Space Formulation of Multichannel Scattering Theory” (Conference on Mathematical Methods and Applications to Scatting Theory, Washington, D.C., 1979, and University of New Mexico preprint).
16.
W. V.
Petryshyn
,
Bull. Amer. Math. Soc.
81
,
223
(
1975
);
W. V.
Petryshyn
,
Proc. Symp. Pure Math.
18
, Part
1
,
206
(
1970
).
17.
K. L. Kowalski, in Few Body Systems and Nuclear Forces, Lecture Notes in Physics, Vol. 87 (Springer, New York, 1978).
18.
Y.
Hahn
,
D. J.
Kouri
, and
F. S.
Levin
,
Phys. Rev. C
10
,
1615
(
1974
).
19.
R.
Goldflam
and
D. J.
Kouri
,
Chem. Phys. Lett.
34
,
594
(
1975
).
20.
D. J.
Kouri
,
H.
Krüger
, and
F. S.
Levin
,
Phys. Rev. D
15
,
1156
(
1977
).
21.
C.
Chandler
,
J. Nucl. Phys. A
301
,
1
(
1978
).
22.
W. Sandhas, in Few Body Problems (North‐Holland, Delhi, 1976).
23.
F. S.
Levin
and
H.
Krüger
,
Phys. Rev. A
15
,
2147
(
1977
).
24.
D. K.
Hoffman
,
D. J.
Kouri
, and
Z. H.
Top
,
J. Chem. Phys.
70
,
4640
(
1979
).
25.
S. K.
Adhikari
and
W.
Glöckle
,
Phys. Rev. C
19
,
616
(
1979
);
S. K.
Adhikari
and
W.
Glöckle
,
19
,
2121
(
1979
).,
Phys. Rev. C
26.
J. W. Evans and D. K. Hoffman, “The Reactive Quantum Boltzmann Equation from the Arrangement Channel BBGKY Hierarchy,” 14th IU‐PAP International Conference on Thermodynamics and Statistical Mechanics, Edmonton, 1980.
27.
T. Kato, Perturbation Theory for Linear Operators (Springer, New York, 1966);
Trans. Amer. Math. Soc.
70
,
195
(
1951
).
28.
P. G.
Federbusch
,
Phys. Rev.
148
,
1551
(
1966
);
R. G.
Newton
,
Phys. Rev.
153
,
1502
(
1967
).
29.
F. S. Levin, in Few Body Problems and Nuclear Forces, Lecture Notes in Physics, Vol. 82 (Springer, New York, 1978).
30.
J. R. Peters, private communication and Ames Laboratory (Iowa State University) Research Report; A. Pazy, Semi‐groups of Linear Operators and Applications to Partial Differential Equations, Lecture Notes ♯10 (University of Maryland, College Park, Md., 1974).
31.
Let P, P be defined as in Sec. III. For any bounded Hilbert space observable A = PA P, we may define the corresponding channel space observable, restricted to PCp, by the real eigenvalue scalar spectral operator A = PAP. For the subalgebra {B = PB P,B∈B(H)}, we may define an involution * by B* = PB+P. Then the observables on PCp are *‐selfadjoint. If P = I, we have constructed a representation of the C*‐algebra of N‐particle quantum mechanics.
32.
G. G. Emch, Algebraic Methods in Statistical Mechanics and Quantum Field Theory (Wiley‐Interscience, New York, 1972).
33.
I. Singer, Bases in Banach Spaces I (Springer, New York, 1970).
34.
N. Dunford and J. T. Schwartz, Linear Operators, Part I, General Theory, (Interscience, New York, 1967).
35.
J. W. Evans and D. K. Hoffman, “Faddeev’s Equations in Differential Form: Completeness of Physical and Spurious Solutions and Spectral Properties,” Ames Laboratory, USDOE, and Department of Chemistry preprint, Iowa State University.
36.
N. Dunford and J. T. Schwartz, Linear Operators, Part III, Spectral Operators (Interscience, New York, 1971).
37.
A. F.
Ruston
,
Proc. Lond. Math. Soc., Ser. 2
53
,
109
(
1951
).
38.
W. O. Amrein, J. M. Jauch, and K. B. Sinha, Scattering Theory in Quantum Mechanics (Benjamin, Reading, 1977).
39.
I. M. Gel’fand and G. E. Shilov, Generalized Functions, Vol. 2 (Academic, New York, 1968).
40.
I. M. Gel’fand and N. Ya. Vilenkin, Generalized Functions, Vol. 4 (Academic, New York, 1968).
41.
A. Böhm in Lectures in Theoretical Physics, Vol. 9A (Gordon and Breach, New York, 1967);
The Rigged Hilbert Space and Quantum Mechanics, Lecture Notes in Physics, Vol. 78 (Springer, New York, 1978).
42.
M. Reed and B. Simon, Methods of Modern Mathematical Physics III: Scattering Theory (Academic, New York, 1979).
43.
R. P. Feynman, Statistical Mechanics (Benjamin, Reading, 1972).
44.
J. M.
Jauch
,
B.
Misra
, and
A. G.
Gibson
,
Helv. Phys. Acta
41
,
513
(
1968
).
This content is only available via PDF.
You do not currently have access to this content.