Using the FKG inequality, we construct infinite volume expectations of products of boson fields and fermi currents (ψ̄)ren for the scalar Yukawa2 model with arbitrary coupling constant. These expectations satisfy the Osterwalder–Schrader axioms with the possible exception of clustering.

1.
G.
Battle
and
L.
Rosen
,
J. Stat. Phys.
22
,
123
192
(
1980
).
2.
J.
Fröhlich
and
B.
Simon
,
Ann. Math.
105
,
493
526
(
1977
).
3.
J.
Magnen
and
R.
Sénéor
,
Commun. Math. Phys.
51
,
297
313
(
1976
).
4.
A.
Cooper
and
L.
Rosen
,
Trans. Am. Math. Soc.
234
,
1
88
(
1977
).
5.
L.
Rosen
,
J. Math. Phys.
18
,
891
897
(
1977
).
6.
J. Balaban and K. Gawedzki, “A Low Temperature Expansion for the Pseudoscalar Yukawa Model of Quantum Fields in Two Space‐Time Dimensions,” preprint.
7.
E.
Seiler
,
Commun. Math. Phys.
42
,
163
182
(
1975
).
8.
B. Simon, The P(φ)2 Euclidean (Quantum) Field Theory (Princeton University, Princeton, N. J., 1974).
9.
T.
Spencer
,
Commun. Math. Phys.
39
,
63
76
(
1974
).
10.
F.
Guerra
,
L.
Rosen
, and
B.
Simon
,
Ann. Inst. Henri Poincaré
25
,
231
334
(
1976
).
11.
E.
Seiler
and
B.
Simon
,
Ann. Phys.
97
,
470
518
(
1976
).
12.
O. McBryan, Contribution to International Colloquium on Mathematical Methods of Quantum Field Theory, Marseille, 1975.
13.
F.
Guerra
,
L.
Rosen
, and
B.
Simon
,
Ann. Math.
101
,
111
259
(
1975
).
14.
J. Fröhlich and Y. M. Park (private communcation);
see also
J.
Fröhlich
and
Y. M.
Park
,
Commun. Math. Phys.
59
,
235
266
(
1978
);
and
J.
Fröhlich
and
E.
Seiler
,
Helv. Phys. Acta
49
,
889
924
(
1976
).
15.
B.
Simon
,
Commun. Math. Phys.
31
,
127
136
(
1973
).
16.
K.
Osterwalder
and
R.
Schrader
,
Commun. Math. Phys.
42
,
281
305
(
1975
).
17.
J. Feldman and R. Raczka, Ann. Phys. 108 212–229.
18.
R. Streater and A. S. Wightman, PCT, Spin and Statistics and Ail That (Benjamin, New York, 1964).
This content is only available via PDF.
You do not currently have access to this content.