Faddeev type equations are considered in differential form as eigenvalue equations for non‐self‐adjoint channel space (matrix) Hamiltonians HF. For these equations in both the spatially confined and infinite systems, the nature of the spurious (nonphysical) solutions is obvious. Typically, these together with the physical solutions (given extra technical assumptions) generate a regular biorthogonal system for the channel space. This property may be used to provide an explicit functional calculus for the then real eigenvalue scalar spectral HF, to show that ±iHF generate uniformly bounded C0 semigroups and to simply relate HF to self‐adjoint Hamiltonian‐like operators. These results extend to the four‐channel Faddeev type equations where the breakup channel is included explicitly.

1.
D. J.
Kouri
,
H.
Krüger
, and
F. S.
Levin
,
Phys. Rev. D
15
,
1156
(
1977
).
2.
D. K.
Hoffman
,
D. J.
Kouri
, and
Z. H.
Top
,
J. Chem. Phys.
70
,
4640
(
1979
).
3.
K. L. Kowalski, in Few Body Systems and Nuclear Forces II, Springer Lect. Notes Phys. 87 (Springer, Berlin, 1978).
4.
W. N.
Polyzou
and
E. F.
Redish
,
Ann. Phys.
119
,
1
(
1979
).
5.
J. W.
Evans
,
J. Math. Phys.
22
,
1672
(
1981
).
6.
L. D. Faddeev, Mathematical Aspects of the Three Body Problem in Quantum Scattering Theory (Davey, New York, 1965).
7.
M.
Baer
and
D. J.
Kouri
,
J. Math. Phys.
14
,
1637
(
1973
);
D. J.
Kouri
and
F. S.
Levin
,
Bull. Am. Phys. Soc.
19
,
489
(
1974
);
D. J.
Kouri
and
F. S.
Levin
,
Phys. Rev. A
10
,
1616
(
1974
);
D. J.
Kouri
and
F. S.
Levin
,
Phys. Letts. B
50
,
421
(
1974
);
D. J.
Kouri
and
F. S.
Levin
,
Nucl. Phys. A
250
,
127
(
1975
)
and
D. J.
Kouri
and
F. S.
Levin
,
A253
,
395
(
1975
); ,
Nucl. Phys. A
W.
Tobocman
,
Phys. Rev. C
9
,
2406
(
1974
).
8.
G.
Bencze
,
Nucl. Phys. A
210
,
568
(
1973
);
E. F.
Redish
,
Nucl. Phys. A
235
,
16
(
1974
);
I. H.
Sloan
,
Phys. Rev. C
6
,
1945
(
1972
).
9.
C.
Chandler
,
J. Nucl. Phys. A
301
,
1
(
1978
).
10.
F. S. Levin, “A Multi‐Cluster, n‐Particle Oeneralization of the Three Particle Faddeev Wave Function Equations,” preprint.
11.
P. G.
Federbusch
,
Phys. Rev.
148
,
1551
(
1966
).
12.
R. G.
Newton
,
Phys. Rev.
153
,
1502
(
1967
).
13.
V. Vanzani, in Few Body Problems and Nuclear Forces I, Springer Lect. Notes Physics 82;(Springer, Berlin, 1978);
Lett. Nuovo Cimento
23
,
586
(
1978
).
14.
S. K.
Adhikari
and
W.
Glockle
,
Phys. Rev. C
19
,
616
(
1979
)
and
S. K.
Adhikari
and
W.
Glockle
,
19
,
2121
(
1979
).,
Phys. Rev. C
15.
M.
L’Huillier
,
E. F.
Redish
, and
P. C.
Tandy
,
J. Math. Phys.
19
,
1276
(
1978
).
16.
J. W. Evans and D. K. Hoffman, “The Reactive Quantum Boltzmann Equation from the Arrangement Channel BBGKY Hierarchy” (14th International Conference on Thermodynamics and Statistical Mechanics, Edmonton, 1980).
17.
W. Sandhas, in Few Body Problems (North Holland, Dehli, 1976).
18.
F. S. Levin, in Few Body Problems and Nuclear Forces I, Springer Lect. Notes in Phys. 82 (Springer, Berlin, 1978).
19.
I. Singer, Bases in Banach Spaces I (Springer, New York, 1970).
20.
N. Dunford and J. T. Schwartz, Linear Operators I, General Theory (Interscience, New York, 1967);
F. Riesz and B. Sz‐Nagy, Functional Analysis (Ungar, New York, 1955).
21.
Under the l2 assumption, this basis is Hilbertian since l2 linear combinations of all eigenvectors (not just the physical ones) converge, and Besselian since such linear combinations span the space (see Ref. 19).
22.
A. E. Taylor, Introduction to Functional Analysis (Wiley, New York, 1958).
23.
N. Dunford and J. T. Schwartz, Linear Operators, Part III, Spectral Operators (Interscience, New York, 1971).
24.
A suitable extension of the Dunford operational calculus is available as is readily demonstrated from (2.30) and (3.24). This leads to the usual “inversion of Laplace transform” expression for e±i/ℏHμl(25).
25.
T. Kato, Perturbation Theory for Linear Operators (Springer, New York, 1966);
A. Pazy, “Semi‐groups of Linear Operators and Applications to Partial Differential Equations” (Lect. Notes No. 10, University of Maryland, 1974).
26.
J. R. Peters, private communication and Ames Laboratory (Iowa State University) Research Report.
27.
M. Reed and B. Simon, Methods of Modern Mathematical Physics IV: Analysis of Operators (Academic, New York, 1978).
28.
P. Benoist‐Gueutal and M. L’Huillier, “Properties of Solutions for N‐ Body Yakubovskii‐Faddeev Equations,” Institut de Physique Nucléaire, Orsay, preprint.
29.
E. C. Titchmarsh, Theory of Fourier Integrals (Oxford U.P., Oxford, 1948).
30.
W. O. Amrein, J. M. Jauch, and K. B. Sinha, Scattering Theory in Quantum Mechanics (Benjamin, Reading, 1977).
31.
R. G. Newton, Scattering Theory of Waves and Particles (McGraw‐Hill, New York, 1966).
32.
V. Vanzani, in Few Body Nuclear Physics (International Atomic Energy Commission, Vienna, 1978);
G.
Cattapan
and
V.
Vanzani
,
Lett. Nuovo Cimento
24
,
391
(
1979
);
L.
Lovitch
and
V.
Vanzani
,
Lett. Nuovo Cimento
26
,
65
(
1979
).
33.
This could be remedied by adding a suitable spurious noninteracting (hyper‐) spherical plane wave (a solution of the inhomogeneous Faddeev equations with spurious delta‐function‐like source at zero hyper‐spherical radius).
34.
J. W. Evans and D. K. Hoifman (to appear).
35.
C. Chandler, private communication.
This content is only available via PDF.
You do not currently have access to this content.